Zobrazit minimální záznam

Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap

dc.contributor.authorPontillo, Giuseppe
dc.contributor.authorPrados, Ferran
dc.contributor.authorColman, Jordan
dc.contributor.authorKanber, Baris
dc.contributor.authorAbdel-Mannan, Omar
dc.contributor.authorAl-Araji, Sarmad
dc.contributor.authorBellenberg, Barbara
dc.contributor.authorBianchi, Alessia
dc.contributor.authorBisecco, Alvino
dc.contributor.authorBrownlee, Wallace J.
dc.contributor.authorBrunetti, Arturo
dc.contributor.authorCagol, Alessandro
dc.contributor.authorCalabrese, Massimiliano
dc.contributor.authorCastellaro, Marco
dc.contributor.authorChristensen, Ronja
dc.contributor.authorCocozza, Sirio
dc.contributor.authorColato, Elisa
dc.contributor.authorCollorone, Sara
dc.contributor.authorCortese, Rosa
dc.contributor.authorDe Stefano, Nicola
dc.contributor.authorEnzinger, Christian
dc.contributor.authorFilippi, Massimo
dc.contributor.authorFoster, Michael A.
dc.contributor.authorGallo, Antonio
dc.contributor.authorGasperini, Claudio
dc.contributor.authorGonzalez-Escamilla, Gabriel
dc.contributor.authorGranziera, Cristina
dc.contributor.authorGroppa, Sergiu
dc.contributor.authorHacohen, Yael
dc.contributor.authorHarbo, Hanne F. F.
dc.contributor.authorHe, Anna
dc.contributor.authorHogestol, Einar A.
dc.contributor.authorKuhle, Jens
dc.contributor.authorLlufriu, Sara
dc.contributor.authorLukas, Carsten
dc.contributor.authorMartinez-Heras, Eloy
dc.contributor.authorMessina, Silvia
dc.contributor.authorMoccia, Marcello
dc.contributor.authorMohamud, Suraya
dc.contributor.authorNistri, Riccardo
dc.contributor.authorNygaard, Gro O.
dc.contributor.authorPalace, Jacqueline
dc.contributor.authorPetracca, Maria
dc.contributor.authorPinter, Daniela
dc.contributor.authorRocca, Maria A.
dc.contributor.authorRovira, Alex
dc.contributor.authorRuggieri, Serena
dc.contributor.authorSastre-Garriga, Jaume
dc.contributor.authorStrijbis, Eva M.
dc.contributor.authorToosy, Ahmed T.
dc.contributor.authorUher, Tomáš
dc.contributor.authorValsasina, Paola
dc.contributor.authorVaněčková, Manuela
dc.contributor.authorVrenken, Hugo
dc.contributor.authorWingrove, Jed
dc.contributor.authorYam, Charmaine
dc.contributor.authorSchoonheim, Menno M.
dc.contributor.authorCiccarelli, Olga
dc.contributor.authorCole, James H.
dc.contributor.authorBarkhof, Frederik
dc.date.accessioned2025-02-13T08:40:59Z
dc.date.available2025-02-13T08:40:59Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.14178/2893
dc.description.abstractBackground and Objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS. Methods: In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS). Results: We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 +- 10.6 years, DD: 11.4 +- 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 +- 8.3 years, DD: 0.7 +- 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: r = 0.06 [0.00-0.13], p = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], p < 0.001). DD gap significantly explained EDSS changes (B = 0.060 [0.038-0.082], p < 0.001), adding to BAG (ΔR2 = 0.012, p < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (r = 0.50 [0.39-0.60], p < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (ΔR2 = 0.064, p < 0.001).Discussion: The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.en
dc.language.isoen
dc.relation.urlhttps://doi.org/10.1212/WNL.0000000000209976
dc.rightsCreative Commons Uveďte původ 4.0 Internationalcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.titleDisentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gapen
dcterms.accessRightsopenAccess
dcterms.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.date.updated2025-02-13T08:40:59Z
dc.subject.keywordbrain agingen
dc.subject.keywordneurodegenerationen
dc.subject.keywordmultiple sclerosisen
dc.subject.keyworddeep learningen
dc.identifier.eissn1526-632X
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/MSM//LX22NPO5107
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/FN/I-FN/RVO-VFN64165
dc.date.embargoStartDate2025-02-13
dc.type.obd73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1212/WNL.0000000000209976
dc.identifier.utWos001408716900004
dc.identifier.eidScopus2-s2.0-85208517085
dc.identifier.obd660332
dc.identifier.pubmed39496109
dc.subject.rivPrimary30000::30100::30103
dcterms.isPartOf.nameNeurology
dcterms.isPartOf.issn0028-3878
dcterms.isPartOf.journalYear2024
dcterms.isPartOf.journalVolume103
dcterms.isPartOf.journalIssue10
uk.faculty.primaryId108
uk.faculty.primaryName1. lékařská fakultacs
uk.faculty.primaryNameFirst Faculty of Medicineen
uk.faculty.secondaryId53
uk.faculty.secondaryNameVšeobecná fakultní nemocnice v Prazecs
uk.faculty.secondaryNameVšeobecná fakultní nemocnice v Prazeen
uk.department.primaryId1527
uk.department.primaryNameNeurologická klinika 1. LF UK a VFNcs
uk.department.primaryNameDepartment of Neurologyen
uk.department.secondaryId5000002609
uk.department.secondaryId1531
uk.department.secondaryId5000002616
uk.department.secondaryNameNeurologická klinika 1.LF a VFNcs
uk.department.secondaryNameNeurologická klinika 1.LF a VFNen
uk.department.secondaryNameRadiodiagnostická klinika 1. LF UK a VFNcs
uk.department.secondaryNameDepartment of Radiologyen
uk.department.secondaryNameRadiodiagnostická klinika 1.LF a VFNcs
uk.department.secondaryNameRadiodiagnostická klinika 1.LF a VFNen
dc.type.obdHierarchyCsČLÁNEK V ČASOPISU::článek v časopisu::původní článekcs
dc.type.obdHierarchyEnJOURNAL ARTICLE::journal article::original articleen
dc.type.obdHierarchyCode73::152::206en
uk.displayTitleDisentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gapen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam