Přeskočit na obsah

Repozitář publikační činnosti

    • čeština
    • English
  • čeština 
    • čeština
    • English
  • Přihlásit se
Zobrazit záznam 
  •   Repozitář publikační činnosti UK
  • Fakulty
  • 1. lékařská fakulta
  • Zobrazit záznam
  • Repozitář publikační činnosti UK
  • Fakulty
  • 1. lékařská fakulta
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap

původní článek
Creative Commons License IconCreative Commons BY Icon
vydavatelská verze
  • žádná další verze
Thumbnail
File can be accessed.Získat publikaci
Autor
Pontillo, Giuseppe
Prados, Ferran
Colman, Jordan
Kanber, Baris
Abdel-Mannan, Omar
Al-Araji, Sarmad
Bellenberg, Barbara
Bianchi, Alessia
Bisecco, Alvino
Brownlee, Wallace J.
Brunetti, Arturo
Cagol, Alessandro
Calabrese, Massimiliano
Castellaro, Marco
Christensen, Ronja
Cocozza, Sirio
Colato, Elisa
Collorone, Sara
Cortese, Rosa
De Stefano, Nicola
Enzinger, Christian
Filippi, Massimo
Foster, Michael A.
Gallo, Antonio
Gasperini, Claudio
Gonzalez-Escamilla, Gabriel
Granziera, Cristina
Groppa, Sergiu
Hacohen, Yael
Harbo, Hanne F. F.
He, Anna
Hogestol, Einar A.
Kuhle, Jens
Llufriu, Sara
Lukas, Carsten
Martinez-Heras, Eloy
Messina, Silvia
Moccia, Marcello
Mohamud, Suraya
Nistri, Riccardo
Nygaard, Gro O.
Palace, Jacqueline
Petracca, Maria
Pinter, Daniela
Rocca, Maria A.
Rovira, Alex
Ruggieri, Serena
Sastre-Garriga, Jaume
Strijbis, Eva M.
Toosy, Ahmed T.
Uher, TomášORCiD Profile - 0000-0003-3160-9022WoS Profile - AAE-9921-2019
Valsasina, Paola
Vaněčková, ManuelaORCiD Profile - 0000-0002-8784-7997WoS Profile - M-1301-2017
Vrenken, Hugo
Wingrove, Jed
Yam, Charmaine
Schoonheim, Menno M.
Ciccarelli, Olga
Cole, James H.
Barkhof, Frederik

Zobrazit další autory

Datum vydání
2024
Publikováno v
Neurology
Ročník / Číslo vydání
103 (10)
ISBN / ISSN
ISSN: 0028-3878
ISBN / ISSN
eISSN: 1526-632X
Metadata
Zobrazit celý záznam
Kolekce
  • 1. lékařská fakulta

Tato publikace má vydavatelskou verzi s DOI 10.1212/WNL.0000000000209976

Abstrakt
Background and Objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS. Methods: In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS). Results: We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 +- 10.6 years, DD: 11.4 +- 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 +- 8.3 years, DD: 0.7 +- 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: r = 0.06 [0.00-0.13], p = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], p < 0.001). DD gap significantly explained EDSS changes (B = 0.060 [0.038-0.082], p < 0.001), adding to BAG (ΔR2 = 0.012, p < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (r = 0.50 [0.39-0.60], p < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (ΔR2 = 0.064, p < 0.001).Discussion: The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.
Klíčová slova
brain aging, neurodegeneration, multiple sclerosis, deep learning
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2893
Zobraz publikaci v dalších systémech
WOS:001408716900004
SCOPUS:2-s2.0-85208517085
PUBMED:39496109
Licence

Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International

Zobrazit podmínky licence

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV
 

 

O repozitáři

O tomto repozitářiAkceptované druhy výsledkůPovinné popisné údajePoučeníCC licence

Procházet

Vše v DSpaceKomunity a kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slovaTato kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slova

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV