dc.contributor.author | Pontillo, Giuseppe | |
dc.contributor.author | Prados, Ferran | |
dc.contributor.author | Colman, Jordan | |
dc.contributor.author | Kanber, Baris | |
dc.contributor.author | Abdel-Mannan, Omar | |
dc.contributor.author | Al-Araji, Sarmad | |
dc.contributor.author | Bellenberg, Barbara | |
dc.contributor.author | Bianchi, Alessia | |
dc.contributor.author | Bisecco, Alvino | |
dc.contributor.author | Brownlee, Wallace J. | |
dc.contributor.author | Brunetti, Arturo | |
dc.contributor.author | Cagol, Alessandro | |
dc.contributor.author | Calabrese, Massimiliano | |
dc.contributor.author | Castellaro, Marco | |
dc.contributor.author | Christensen, Ronja | |
dc.contributor.author | Cocozza, Sirio | |
dc.contributor.author | Colato, Elisa | |
dc.contributor.author | Collorone, Sara | |
dc.contributor.author | Cortese, Rosa | |
dc.contributor.author | De Stefano, Nicola | |
dc.contributor.author | Enzinger, Christian | |
dc.contributor.author | Filippi, Massimo | |
dc.contributor.author | Foster, Michael A. | |
dc.contributor.author | Gallo, Antonio | |
dc.contributor.author | Gasperini, Claudio | |
dc.contributor.author | Gonzalez-Escamilla, Gabriel | |
dc.contributor.author | Granziera, Cristina | |
dc.contributor.author | Groppa, Sergiu | |
dc.contributor.author | Hacohen, Yael | |
dc.contributor.author | Harbo, Hanne F. F. | |
dc.contributor.author | He, Anna | |
dc.contributor.author | Hogestol, Einar A. | |
dc.contributor.author | Kuhle, Jens | |
dc.contributor.author | Llufriu, Sara | |
dc.contributor.author | Lukas, Carsten | |
dc.contributor.author | Martinez-Heras, Eloy | |
dc.contributor.author | Messina, Silvia | |
dc.contributor.author | Moccia, Marcello | |
dc.contributor.author | Mohamud, Suraya | |
dc.contributor.author | Nistri, Riccardo | |
dc.contributor.author | Nygaard, Gro O. | |
dc.contributor.author | Palace, Jacqueline | |
dc.contributor.author | Petracca, Maria | |
dc.contributor.author | Pinter, Daniela | |
dc.contributor.author | Rocca, Maria A. | |
dc.contributor.author | Rovira, Alex | |
dc.contributor.author | Ruggieri, Serena | |
dc.contributor.author | Sastre-Garriga, Jaume | |
dc.contributor.author | Strijbis, Eva M. | |
dc.contributor.author | Toosy, Ahmed T. | |
dc.contributor.author | Uher, Tomáš | |
dc.contributor.author | Valsasina, Paola | |
dc.contributor.author | Vaněčková, Manuela | |
dc.contributor.author | Vrenken, Hugo | |
dc.contributor.author | Wingrove, Jed | |
dc.contributor.author | Yam, Charmaine | |
dc.contributor.author | Schoonheim, Menno M. | |
dc.contributor.author | Ciccarelli, Olga | |
dc.contributor.author | Cole, James H. | |
dc.contributor.author | Barkhof, Frederik | |
dc.date.accessioned | 2025-02-13T08:40:59Z | |
dc.date.available | 2025-02-13T08:40:59Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14178/2893 | |
dc.description.abstract | Background and Objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS. Methods: In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS). Results: We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 +- 10.6 years, DD: 11.4 +- 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 +- 8.3 years, DD: 0.7 +- 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: r = 0.06 [0.00-0.13], p = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], p < 0.001). DD gap significantly explained EDSS changes (B = 0.060 [0.038-0.082], p < 0.001), adding to BAG (ΔR2 = 0.012, p < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (r = 0.50 [0.39-0.60], p < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (ΔR2 = 0.064, p < 0.001).Discussion: The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression. | en |
dc.language.iso | en | |
dc.relation.url | https://doi.org/10.1212/WNL.0000000000209976 | |
dc.rights | Creative Commons Uveďte původ 4.0 International | cs |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.title | Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap | en |
dcterms.accessRights | openAccess | |
dcterms.license | https://creativecommons.org/licenses/by/4.0/legalcode | |
dc.date.updated | 2025-02-13T08:40:59Z | |
dc.subject.keyword | brain aging | en |
dc.subject.keyword | neurodegeneration | en |
dc.subject.keyword | multiple sclerosis | en |
dc.subject.keyword | deep learning | en |
dc.identifier.eissn | 1526-632X | |
dc.relation.fundingReference | info:eu-repo/grantAgreement/MSM//LX22NPO5107 | |
dc.relation.fundingReference | info:eu-repo/grantAgreement/FN/I-FN/RVO-VFN64165 | |
dc.date.embargoStartDate | 2025-02-13 | |
dc.type.obd | 73 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1212/WNL.0000000000209976 | |
dc.identifier.utWos | 001408716900004 | |
dc.identifier.eidScopus | 2-s2.0-85208517085 | |
dc.identifier.obd | 660332 | |
dc.identifier.pubmed | 39496109 | |
dc.subject.rivPrimary | 30000::30100::30103 | |
dcterms.isPartOf.name | Neurology | |
dcterms.isPartOf.issn | 0028-3878 | |
dcterms.isPartOf.journalYear | 2024 | |
dcterms.isPartOf.journalVolume | 103 | |
dcterms.isPartOf.journalIssue | 10 | |
uk.faculty.primaryId | 108 | |
uk.faculty.primaryName | 1. lékařská fakulta | cs |
uk.faculty.primaryName | First Faculty of Medicine | en |
uk.faculty.secondaryId | 53 | |
uk.faculty.secondaryName | Všeobecná fakultní nemocnice v Praze | cs |
uk.faculty.secondaryName | Všeobecná fakultní nemocnice v Praze | en |
uk.department.primaryId | 1527 | |
uk.department.primaryName | Neurologická klinika 1. LF UK a VFN | cs |
uk.department.primaryName | Department of Neurology | en |
uk.department.secondaryId | 5000002609 | |
uk.department.secondaryId | 1531 | |
uk.department.secondaryId | 5000002616 | |
uk.department.secondaryName | Neurologická klinika 1.LF a VFN | cs |
uk.department.secondaryName | Neurologická klinika 1.LF a VFN | en |
uk.department.secondaryName | Radiodiagnostická klinika 1. LF UK a VFN | cs |
uk.department.secondaryName | Department of Radiology | en |
uk.department.secondaryName | Radiodiagnostická klinika 1.LF a VFN | cs |
uk.department.secondaryName | Radiodiagnostická klinika 1.LF a VFN | en |
dc.type.obdHierarchyCs | ČLÁNEK V ČASOPISU::článek v časopisu::původní článek | cs |
dc.type.obdHierarchyEn | JOURNAL ARTICLE::journal article::original article | en |
dc.type.obdHierarchyCode | 73::152::206 | en |
uk.displayTitle | Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap | en |