Zobrazit minimální záznam

Advancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with -OH Moieties

dc.contributor.authorPlachká, Kateřina
dc.contributor.authorPilařová, Veronika
dc.contributor.authorGazárková, Taťána
dc.contributor.authorŠvec, František
dc.contributor.authorGarrigues, Jean Christophe
dc.contributor.authorNováková, Lucie
dc.date.accessioned2024-08-13T07:17:17Z
dc.date.available2024-08-13T07:17:17Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.14178/2571
dc.description.abstractThe retention behavior in supercritical fluid chromatography and its stability over time are still unsatisfactorily explained phenomena despite many important contributions in recent years, especially focusing on linear solvation energy relationship modeling. We studied polar stationary phases with predominant -OH functionalities, i.e., silica, hybrid silica, and diol columns, and their retention behavior over time. We correlated molecular descriptors of analytes with their retention using three organic modifiers of the CO2-based mobile phase. The differences in retention behavior caused by using additives, namely, 10 mmol/L NH3 and 2% H2O in methanol, were described in correlation to analyte properties and compared with the CO2/methanol mobile phase. The structure of >100 molecules included in this study was optimized by semiempirical AM1 quantum mechanical calculations and subsequently described by 226 molecular descriptors including topological, constitutional, hybrid, electronic, and geometric descriptors. An artificial neural networks simulator with deep learning toolbox was trained on this extensive set of experimental data and subsequently used to determine key molecular descriptors affecting the retention by the highest extent. After comprehensive statistical analysis of the experimental data collected during one year of column use, the retention on different stationary phases was fundamentally described. The changes in the retention behavior during one year of column use were described and their explanation with a proposed interpretation of changes on the stationary phase surface was suggested. The effect of the regeneration procedure on the retention was also evaluated. This fundamental understanding of interactions responsible for retention in SFC can be used for the evidence-based selection of stationary phases suitable for the separation of particular analytes based on their specific physicochemical properties.en
dc.language.isoen
dc.relation.urlhttp://pubs.acs.org/doi/10.1021/acs.analchem.4c01811
dc.rightsCreative Commons Uveďte původ 4.0 Internationalcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.titleAdvancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with -OH Moietiesen
dcterms.accessRightsopenAccess
dcterms.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.date.updated2025-03-19T05:11:06Z
dc.subject.keywordsupercritical fluid chromatographyen
dc.subject.keywordartificial neural networksen
dc.subject.keywordstationary phasesen
dc.identifier.eissn1520-6882
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/MSM//SVV260662
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/MSM//EH22_008/0004607
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/GA0/GA/GA21-27270S
dc.relation.fundingReferenceinfo:eu-repo/grantAgreement/UK/COOP/COOP
dc.date.embargoStartDate2025-03-19
dc.type.obd73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1021/acs.analchem.4c01811
dc.identifier.utWos001280432800001
dc.identifier.eidScopus2-s2.0-85199785989
dc.identifier.obd650419
dc.identifier.pubmed39069659
dc.subject.rivPrimary30000::30100::30104
dc.relation.datasetUrlhttp://zenodo.org/records/12707608
dcterms.isPartOf.nameAnalytical Chemistry
dcterms.isPartOf.issn0003-2700
dcterms.isPartOf.journalYear2024
dcterms.isPartOf.journalVolume96
dcterms.isPartOf.journalIssue31
uk.faculty.primaryId113
uk.faculty.primaryNameFarmaceutická fakulta v Hradci Královécs
uk.faculty.primaryNameFaculty of Pharmacy in Hradec Kraloveen
uk.department.primaryId368
uk.department.primaryNameKatedra analytické chemiecs
uk.department.primaryNameDepartment of Analytical Chemistryen
dc.description.pageRange12748-12759
dc.type.obdHierarchyCsČLÁNEK V ČASOPISU::článek v časopisu::původní článekcs
dc.type.obdHierarchyEnJOURNAL ARTICLE::journal article::original articleen
dc.type.obdHierarchyCode73::152::206en
uk.displayTitleAdvancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with -OH Moietiesen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam