Přeskočit na obsah

Repozitář publikační činnosti

    • čeština
    • English
  • čeština 
    • čeština
    • English
  • Přihlásit se
Zobrazit záznam 
  •   Repozitář publikační činnosti UK
  • Fakulty
  • Farmaceutická fakulta v Hradci Králové
  • Zobrazit záznam
  • Repozitář publikační činnosti UK
  • Fakulty
  • Farmaceutická fakulta v Hradci Králové
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with -OH Moieties

původní článek
Creative Commons License IconCreative Commons BY Icon
vydavatelská verze
  • žádná další verze
Thumbnail
File can be accessed.Získat publikaci
Autor
Plachká, KateřinaORCiD Profile - 0000-0001-9655-9199WoS Profile - S-6470-2017Scopus Profile - 57188986299
Pilařová, VeronikaORCiD Profile - 0000-0002-9394-2130WoS Profile - T-6365-2017Scopus Profile - 55211778900
Gazárková, Taťána
Švec, František
Garrigues, Jean Christophe
Nováková, LucieORCiD Profile - 0000-0003-3570-5871WoS Profile - S-6604-2017Scopus Profile - 6603839921

Zobrazit další autory

Datum vydání
2024
Publikováno v
Analytical Chemistry
Ročník / Číslo vydání
96 (31)
ISBN / ISSN
ISSN: 0003-2700
ISBN / ISSN
eISSN: 1520-6882
Metadata
Zobrazit celý záznam
Kolekce
  • Farmaceutická fakulta v Hradci Králové

Tato publikace má vydavatelskou verzi s DOI 10.1021/acs.analchem.4c01811

Abstrakt
The retention behavior in supercritical fluid chromatography and its stability over time are still unsatisfactorily explained phenomena despite many important contributions in recent years, especially focusing on linear solvation energy relationship modeling. We studied polar stationary phases with predominant -OH functionalities, i.e., silica, hybrid silica, and diol columns, and their retention behavior over time. We correlated molecular descriptors of analytes with their retention using three organic modifiers of the CO2-based mobile phase. The differences in retention behavior caused by using additives, namely, 10 mmol/L NH3 and 2% H2O in methanol, were described in correlation to analyte properties and compared with the CO2/methanol mobile phase. The structure of >100 molecules included in this study was optimized by semiempirical AM1 quantum mechanical calculations and subsequently described by 226 molecular descriptors including topological, constitutional, hybrid, electronic, and geometric descriptors. An artificial neural networks simulator with deep learning toolbox was trained on this extensive set of experimental data and subsequently used to determine key molecular descriptors affecting the retention by the highest extent. After comprehensive statistical analysis of the experimental data collected during one year of column use, the retention on different stationary phases was fundamentally described. The changes in the retention behavior during one year of column use were described and their explanation with a proposed interpretation of changes on the stationary phase surface was suggested. The effect of the regeneration procedure on the retention was also evaluated. This fundamental understanding of interactions responsible for retention in SFC can be used for the evidence-based selection of stationary phases suitable for the separation of particular analytes based on their specific physicochemical properties.
Klíčová slova
supercritical fluid chromatography, artificial neural networks, stationary phases
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2571
Zobraz publikaci v dalších systémech
WOS:001280432800001
SCOPUS:2-s2.0-85199785989
PUBMED:39069659
Licence

Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International

Zobrazit podmínky licence

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV
 

 

O repozitáři

O tomto repozitářiAkceptované druhy výsledkůPovinné popisné údajePoučeníCC licence

Procházet

Vše v DSpaceKomunity a kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slovaTato kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slova

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV