Reducing the biases of the conventional meta-analysis of correlations

Datum vydání
2025Publikováno v
Research Synthesis MethodsNakladatel / Místo vydání
WileyRočník / Číslo vydání
16 (1)ISBN / ISSN
ISSN: 1759-2879ISBN / ISSN
eISSN: 1759-2887Informace o financování
GA0//GA24-11583S
MSM//LX22NPO5101
Metadata
Zobrazit celý záznamKolekce
Tato publikace má vydavatelskou verzi s DOI 10.1017/rsm.2024.5
Abstrakt
Conventional meta-analyses (both fixed and random effects) of correlations are biased due to the mechanical relationship between the estimated correlation and its standard error. Simulations that are closely calibrated to match actual research conditions widely seen across correlational studies in psychology corroborate these biases and suggest two solutions: UWLS+3 and HS. UWLS+3 is a simple inverse-variance weighted average (the unrestricted weighted least squares) that adjusts the degrees of freedom and thereby reduces small-sample bias to scientific negligibility. UWLS+3 as well as the Hunter and Schmidt approach (HS) are less biased than conventional random-effects estimates of correlations and Fisher's z, whether or not there is publication selection bias. However, publication selection bias remains a ubiquitous source of bias and false-positive findings. Despite the relationship between the estimated correlation and its standard error in the absence of selective reporting, the precision-effect test/precision-effect estimate with standard error (PET-PEESE) nearly eradicates publication selection bias. Surprisingly, PET-PEESE keeps the rate of false positives (i.e., type I errors) within their nominal levels under the typical conditions widely seen across psychological research whether there is publication selection bias, or not.
Klíčová slova
correlations, meta-analysis, publication selection bias, small-sample bias,
Trvalý odkaz
https://hdl.handle.net/20.500.14178/3362Licence
Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International
