Přeskočit na obsah

Repozitář publikační činnosti

    • čeština
    • English
  • čeština 
    • čeština
    • English
  • Přihlásit se
Zobrazit záznam 
  •   Repozitář publikační činnosti UK
  • Fakulty
  • Pedagogická fakulta
  • Zobrazit záznam
  • Repozitář publikační činnosti UK
  • Fakulty
  • Pedagogická fakulta
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profiling Physical Fitness of Physical Education Majors using Unsupervised Machine Learning

původní článek
Creative Commons License IconCreative Commons BY Icon
vydavatelská verze
  • žádná další verze
Thumbnail
File can be accessed.Získat publikaci
Autor
BONILLA, D
SÁNCHEZ-ROJAS, I
MENDOZA-ROMERO, D
MORENO, Y
Kočí, JanaORCiD Profile - 0000-0003-4714-5285
GÓMEZ-MIRANDA, L
KREIDER, R
PETRO, J

Zobrazit další autory

Datum vydání
2022
Publikováno v
International Journal of Environmental Research and Public Health
Ročník / Číslo vydání
1 (146)
ISBN / ISSN
ISSN: 1661-7827
ISBN / ISSN
eISSN: 1660-4601
Metadata
Zobrazit celý záznam
Kolekce
  • Pedagogická fakulta

Tato publikace má vydavatelskou verzi s DOI 10.3390/ijerph20010146

Abstrakt
The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.
Klíčová slova
cardiorespiratory fitness, physical endurance, muscle power, sprint speed, range of motion, unsupervised machine learning
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2452
Zobraz publikaci v dalších systémech
WOS:000908659100001
SCOPUS:2-s2.0-85145980442
Licence

Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International

Zobrazit podmínky licence

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV
 

 

O repozitáři

O tomto repozitářiAkceptované druhy výsledkůPovinné popisné údajePoučeníCC licence

Procházet

Vše v DSpaceKomunity a kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slovaTato kolekcePracovištěDle data publikováníAutořiNázvyKlíčová slova

DSpace software copyright © 2002-2016  DuraSpace
Kontaktujte nás | Vyjádření názoru
Theme by 
Atmire NV