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Using patterns of shared taxa to infer bacterial dispersal in 
human living environment in urban and rural areas
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ABSTRACT Contact with environmental microbial communities primes the human 
immune system. Factors determining the distribution of microorganisms, such as 
dispersal, are thus important for human health. Here, we used the relative number of 
bacteria shared between environmental and human samples as a measure of bacterial 
dispersal and studied these associations with living environment and lifestyles. We 
analyzed amplicon sequence variants (ASVs) of the V4 region of 16S rDNA gene from 
347 samples of doormat dust as well as samples of saliva, skin swabs, and feces from 
53 elderly people in urban and rural areas in Finland at three timepoints. We first 
enumerated the ASVs shared between doormat and one of the human sample types 
(i.e., saliva, skin swab, or feces) of each individual subject and calculated the shared ASVs 
as a proportion of all ASVs in the given sample type of that individual. We observed 
that the patterns for the proportions of shared ASVs differed among seasons and human 
sample type. In skin samples, there was a negative association between the proportion 
of shared ASVs and the coverage of built environment (a proxy for degree of urbaniza
tion), whereas in saliva data, this association was positive. We discuss these findings in 
the context of differing species pools in urban and rural environments.

IMPORTANCE Understanding how environmental microorganisms reach and interact 
with humans is a key question when aiming to increase human contacts with natural 
microbiota. Few methods are suitable for studying microbial dispersal at relatively large 
spatial scales. Thus, we tested an indirect method and studied patterns of bacterial taxa 
that are shared between humans and their living environment.

KEYWORDS bacteria, biodiversity hypothesis, dispersal, hygiene hypothesis, land cover

B oth theoretical and empirical studies indicate that microbiota within and around us 
strongly affect the human immune system and health [reviewed in references (1, 2)]. 

Contact with diverse microbial communities, especially early in life, primes the human 
immune system to work correctly (3). Hygiene and biodiversity hypotheses suggest 
that Western lifestyle, urbanized living environment, and decreasing biodiversity have 
decreased contact with diverse microbiota, contributing to the increasing abundance of 
non-communicable diseases such as allergy and asthma (4–7). Factors determining the 
distribution of microorganisms are thus important for human health.

Organismal distribution in space and time is governed by four fundamental 
processes: speciation, drift, selection, and dispersal (8). In microbial communities, 
speciation (or diversification) can occur at very short time scales, for instance, when 
new species or forms emerge via mutations or horizontal gene transfer (9). Ecologi
cal drift refers to the stochastic changes in species abundance. In microbial communi
ties, most taxa occur in low abundances and rare taxa are particularly vulnerable to 
random extinctions [i.e., drift (10)]. Deterministic selection driven by organismal and 
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environmental differences is commonly recognized as differences in microbial communi
ties at adjacent but environmentally distinct sites, such as the dry skin of human elbows 
and knees compared to moist skin of the bends of elbows and knees (11). Finally, 
dispersal allows the movement of organisms from one location to another (8).

In the context of biodiversity hypothesis (7), dispersal can be considered espe
cially important: how do microorganisms in natural environments disperse and reach 
humans and their living environment? Dispersal is complex. First, the regional species 
pools determine the species assemblages that have the potential to disperse to local 
communities (12, 13). When considering a human as the local site for microbes, a region 
can be considered as the geographical area where this individual is dwelling. Composi
tion of the regional microbial species pool depends, among other things, on land cover 
and degree of urbanization (5). Rural areas often have more abundant and more diverse 
aerial microbial communities than urban areas (14, 15). Bacterial communities also 
differ among indoor spaces; e.g., homes are enriched with human-associated bacteria 
compared to barns (16), and house plants affect microbial communities of a home 
and its residents (17, 18). Second, microorganisms differ in their dispersal ability; e.g., 
microbes with dormant stages may have higher dispersal potential than those without 
(19). Third, especially for microorganisms that rely on passive dispersal, environmental 
factors such as wind (20) or animal vectors (21) are important. For human microbiota, 
lifestyles interact with potential for microbial dispersal. Particularly, the number of social 
contacts, cohabiting humans and non-humans (22), quantity and quality of time spent 
outdoors (23–25), and the season likely affect the human microbiome assembly.

In situ measurements of dispersal of microorganisms are difficult if not impossible 
at large spatial scales. Thus, several indirect, pattern-based approaches have been 
employed to study their dispersal (26–28). Previous studies have reported that residents 
share bacterial communities with home surfaces to the extent that the occupants leave 
distinct microbial fingerprints on the surfaces (29). Data also suggest that bacterial 
dispersal from humans to indoor surfaces is central for bacterial community transfer 
(30). These studies, however, have focused on surfaces that are not especially collecting 
outdoor microbes, such as doorknobs and chairs. In contrast, in our three previous 
studies, we sampled bacteria from doormats that collected soil carried home from 
outdoors via home occupants’ shoes and feet (31–33). A common custom in Finland 
is to brush the soles of shoes on a doormat and then leave the outdoor shoes in 
the hallway. This makes the doormat an optimal collector of outdoor dust and soil, 
along with the environmental microbes that have the potential to disperse on and into 
the human residents. Based on Moquet and Loreau’s (34) seminal contribution, high 
dispersal should homogenize communities. Therefore, we postulate that the higher the 
dispersal between the study subject and his/her surroundings, the higher the relative 
number of bacterial taxa shared between human samples and doormats.

We analyzed data of a total of 347 bacterial samples of soil deposited on door
mats and of human saliva, skin swab, and fecal samples (Fig. 1). These data were 
collected from 53 elderly people and their residences in the city of Lahti in southern 
Finland and surrounding countryside. To account for seasonal variation, we sampled 
at three timepoints: in spring and autumn 2015 and winter 2016 (except skin swabs). 
Bacterial DNA was extracted, and the hypervariable V4 region within the 16S rDNA 
was sequenced. We first enumerated bacterial amplicon sequence variants (ASVs, i.e., 
sequences with at least 99% similarity) that were shared between doormat and one of 
the human sample types (saliva, skin swab, or feces). As the number of ASVs likely affects 
the number of shared ASVs, we then calculated the proportion of shared ASVs of the 
total number of ASVs in each human sample and used this proportion as an indicator of 
dispersal potential within homes.

Previously, we have reported that the total volume of soil deposited on the doormats, 
as well as the bacterial richness, is inversely associated with the proportion of built 
environment in the surroundings of permanent residences in Finland (33). Many studies 
have related human microbiota with land cover [e.g., see references (35, 36)] and have 
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shown that farm children often have more diverse microbiota than urban dwellers (37), 
although this relationship is complex (38). Here we build on our previous studies and 
explore the bacterial dispersal and its association with land cover. Little is known about 
how urbanization affects bacterial dispersal, a factor key to bacterial transfer from the 
living environment to human residents. Thus, here we test whether urbanization per se 
influences bacterial dispersal.

In addition to land cover or urbanization, living conditions and lifestyles may affect 
the degree of bacterial dispersal into and within homes. For example, exposure to 
outdoor environment is likely to affect bacterial dispersal. Thus, we hypothesize that 
time spent for outdoor recreation in general, or specifically, for gardening is positively 
associated with the proportion of shared microbiome. Also, indoor pets can affect the 
bacterial dispersal into and within homes. Thus, pets can provide an additional source 
of microbiota by adding their own individual microbial community into residents’ home 
(22) or they can act as dispersal vectors by either bringing outdoor microbiota indoors 
(e.g., dogs) or circulate the microbiota when wandering within the home and being in 
contact with human residents. Similarly, the number of residents and visitors may add 
shared dispersal sources and thus increase the introduction and circulation of microbes 
indoors. Hands are potentially a crucial dispersal vector between a human and the 
environment (39). As the handwashing frequency is likely to affect the hand microbiome, 
we further hypothesize that frequent handwashing will reduce dispersal, i.e., the number 
of shared bacterial ASVs between the environment and skin.

FIG 1 Sampling. Illustration summarizing the sampling protocol. Soil deposited on participants’ doormats was collected into zipper bags (gray bags on the 

top). From the same study participants, skin swabs and saliva samples were collected using sterile cotton wool sticks. Fecal samples were collected into special 

fecal sample tubes. In spring, skin swab samples were taken before use of the doormats, but all the other samples were taken at the same time after the use of 

doormats (see Materials and Methods). Illustration created with BioRender.com.
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To summarize, we evaluated whether built environment is associated with the 
proportion of bacterial ASVs shared between human and doormat samples within the 
household. We also hypothesize that:

1. The proportion of bacterial ASVs shared between human and doormat samples is 
higher in the presence of an indoor pet.

2. The proportion of bacterial ASVs shared between human and doormat samples is 
lower for those washing hands often.

3. The following variables are positively associated with the proportion of shared 
bacteria: outdoor recreation, gardening, number of days the doormat has been in 
use, and number of persons living and visiting the home.

RESULTS

Total number of ASVs ranged from 55 to 218 in saliva, from 117 to 585 on the skin, 
from 44 to 356 in feces, and from 283 to 894 on doormat samples (see Table 3). 
Doormat samples had the highest diversity (Fig. 2). The four most abundant phyla in 
doormat samples were Proteobacteria (27%), Bacteroidetes (23%), Actinobacteria (16%), 
and Firmicutes (8%). As many as 15% of reads remained unclassified. In saliva samples, 
most abundant phyla were Fusobacteria (28%), Bacteroidetes (24%), Firmicutes (18%), 
and Proteobacteria (13%). Only 0.8% of these reads were unclassified. Skin swab samples 
were dominated by Actinobacteria (35%), followed by Firmicutes (26%), Proteobacteria 
(23%), and Bacteroidetes (6%). Skin contained several minor phyla, and 3% of reads 
remained unclassified. Fecal samples were strongly dominated by Firmicutes (51%) and 
Bacteroidetes (40%); a minority belonged to Actinobacteria (4%) and Proteobacteria 
(2%). In feces, 3% of reads remained unclassified at the phylum level.

Community structure

The sample types mainly clustered to distinct groups [Fig. 3; all permutational multivari
ate analyses of variance (PERMANOVAs), P = 0.001]. Although some overlap was evident 
when the first and second axes were plotted in principal coordinate analysis (PCoA, Fig. 
3), the distinction was clear when the first axis was plotted against the third axis (Fig. S2). 
Variation captured even by the first axis was low (≤11%).

We plotted each human sample type at each timepoint together with doormat 
samples (Fig. 4). As expected, the first and most important PCoA axis separated samples 
by sample type (all PERMANOVAs, P = 0.001). Based on permutational test of multivariate 
homogeneity of group dispersions (PERMIDSP), human sample types showed sometimes 
lower and sometimes higher beta diversity compared to mat samples (Table 1). Saliva 
samples had always lower beta diversity than mat samples. This was also true for skin 
swab samples in the autumn. In contrast, fecal samples in autumn had higher beta 
diversity than mat samples. Variation explained by second PCoA axis was very low (≤5%). 
Interestingly, this axis seemed to simultaneously explain variation in doormat and skin 
swab samples. Especially, the skin swab bacteria of the rural study subject numbers r17, 
r23, and r30 appeared to correlate with their doormat bacteria (Fig 4.).

Shared taxa

At the first timepoint (spring), all four sample types (i.e., mat, saliva, skin, and feces) were 
available from 19 study subjects. Venn diagram (Fig. 5) shows that the number of ASVs 
that were shared between skin and doormat samples was higher (833 ASVs in total) 
than the number of ASVs shared between doormat and feces (42 in total) and doormat 
and saliva (27 in total). Only three ASVs were present in all sample types. These three 
ASVs were assigned to Lactobacillus, Lachnospiraceae_unclassified, and Enterobacteria
ceae_unclassified.

We enumerated the number of shared taxa between doormat samples and each of 
the human sample types. The number of these shared ASVs for each study subject varied 

Full-Length Text Applied and Environmental Microbiology

Month XXXX  Volume 0  Issue 0 10.1128/aem.00903-24 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
22

 S
ep

te
m

be
r 

20
24

 b
y 

78
.8

0.
11

7.
20

8.

https://doi.org/10.1128/aem.00903-24


from 0 to 18 in saliva data sets, from 0 to 228 in skin data sets, and from 0 to 48 in fecal 
data sets (see Table 3). Finally, we estimated the proportion of shared taxa from the total 
number in any given human sample type. This proportion varied between 0% and 17% 
in saliva, between 0% and 43% in the skin, and between 0% and 41% in feces and was on 
average highest in the skin (see Table 3; Fig. S2).

We used this proportion of shared taxa as a dependent variable in a generalized linear 
mixed-effects model (GLMM). Initial GLMMs were built for each explanatory variable 

FIG 2 Relative abundance of bacterial taxa. Relative abundance of bacterial phyla, classes, and orders in doormat, saliva, skin swab, and fecal samples in the 

spring data (June 2015). Only study subjects (N = 19) with all sample types available are included. The figure was produced with KRONA (40). Interactive figures 

showing proportions also at finer taxonomic levels (up to ASV level) are provided in the supplement (Appendix A).
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separately (see flowchart in Fig. S1). These models showed associations especially for 
saliva and skin data (Tables S1a and b).

For saliva data, initial GLMMs showed that the proportion of shared ASVs increased 
when the coverage of built environment increased (estimate 0.019, P = 0.006; Table 
S1a), wehen there were no indoor pets in the household (estimate −1.615, P = 0.014), 
when outdoor recreation decreased (estimate −1.252, P = 0.002), when participants did 
gardening less often (estimate −0.892, P = 0.025), and when there were fewer people 
living and visiting the house (estimate −0.260, P = 0.029; Table S1a). None of the variables 
showed significant interaction with the timepoint. The timepoint itself, however, was 

FIG 3 Principal coordinate analysis (PCoA) for all sample matrices. PCoA for all sample matrices (doormat, green; saliva, blue; skin, brown; feces, black) in the 

spring data (June 2015). We processed presence-absence data with the Bray-Curtis index a.k.a. Sørensen index, abundance data with Bray-Curtis index, and 

abundance data with Hellinger transformation and Euclidean distance. Only study subjects (N = 19) with all sample types available are included.
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significant (P < 0.001; Table S1a), and on average, the proportion of shared ASVs was 
highest in winter (Fig. S3). After forward selection, the final model indicated that the 
proportion of shared ASVs increased when built environment increased but when the 
general amount of outdoor recreation decreased (Table 2; Fig. 6). When timepoints were 
analyzed separately, significant variables appeared only in winter data. This finding, 
together with inspection of the plot (Fig. 7), suggested that winter data caused the 
pattern for built environment in the model for all timepoints.

Contrary to our saliva data, initial models for skin data showed an increasing 
proportion of shared ASVs with decreasing built environment (estimate −0.011, P 

FIG 4 Principal coordinate analysis (PCoA) between environmental (doormat) and human samples. PCoA for environmental (doormat, green) and human 

samples (saliva, blue; skin, brown; and feces, black) in spring, autumn, and winter (winter was not available for skin samples). Numbers refer to study subjects, 

and the letter prior to the number refers to either urban (u) or rural (r). Only those study subjects who had both sample matrices available at each timepoint are 

included. The total number of study subjects (N) in each figure is given, as well as the number of urban subjects. Sørensen index (i.e., presence-absence data with 

Bray-Curtis distance) was used.
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= 0.008; Table S1b). In skin data, three explanatory variables had interactions with 
timepoint (i.e., gardening, days that mat was in use, and handwashing). Also contrary to 
the saliva data, the number of persons living and visiting was positively associated with 

FIG 5 Venn diagram of samples in spring. Only study persons (N = 19) with all sample types available are included.

TABLE 1 Results of multivariate homogeneity of group dispersions (PERMDISP) comparing each of the human sample types to mat samples in each timepoint

Average distance to median PERMDISP ANOVAa

Mat Human Df Sum Sq Mean Sq F value Pr(>F) P valueb

Saliva spring 0.61 0.56 Groups 1 0.049 0.049 51.4 5.4E-10 ***
Residuals 72 0.068 0.001

Saliva autumn 0.61 0.56 Groups 1 0.041 0.041 42.4 1.9E-08 ***
Residuals 58 0.056 0.001

Saliva winter 0.63 0.57 Groups 1 0.055 0.055 41.2 1.3E-08 ***
Residuals 72 0.096 0.001

Feces spring 0.61 0.62 Groups 1 0.001 0.001 1 0.3196
Residuals 72 0.059 0.001

Feces autumn 0.60 0.62 Groups 1 0.003 0.003 5.94 0.02097 *
Residuals 30 0.016 0.001

Feces winter 0.63 0.62 Groups 1 0.001 0.001 0.97 0.3298
Residuals 44 0.033 0.001

Skin spring 0.61 0.62 Groups 1 0.003 0.003 3.1 0.08443
Residuals 48 0.047 0.001

Skin autumn 0.61 0.59 Groups 1 0.008 0.008 8.72 0.00471 **
Residuals 52 0.050 0.001

aANOVA, analysis of variance.
b*, P < 0.05; **, P < 0.01; ***, P < 0.001.
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the proportion of shared ASVs (estimate 0.142, P = 0.041). Timepoint was also significant, 
and the proportion of shared ASVs was lower in autumn compared to spring (estimate 
−0.183, P = 0.005). Forward selection with skin data led to a complex model including 
two interactions with timepoint (days that mat was in use and gardening) and built 
environment (Table 2; Fig. 8). When timepoints were analyzed separately, no explanatory 
variables appeared informative in the autumn. In spring, built environment was the only 
explanatory variable entering the model (estimate −0.012, P = 0.005; Fig. 9).

In initial models for fecal data, significant interactions appeared for five explanatory 
variables (i.e., built environment, inside pets, gardening, number of persons living and 
visiting in the house, and handwashing; Table S1c). After forward selection, the model 
included two interactions with timepoint (handwashing and number of residents/visi
tors, Table 2). When the timepoints were analyzed separately, none of the explanatory 
variables remained informative in winter. Too few fecal observations were available in 
autumn data, which permitted the analysis of this timepoint (see Table 3). In spring, 
however, one explanatory variable entered the model: the general amount of outdoor 
recreation was negatively associated with the proportion of shared ASVs (estimate 
−3.306, P = 0.016). Further inspection of the scatter plot (Fig. 10) indicated that two 
observations strongly affected this result.
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FIG 6 Scatter plot of most important variables in saliva GLMMs. Proportion of shared ASVs in saliva samples plotted against the coverage of built environment. 

Each timepoint is given in different colors. Point size is relative to the amount of time study subjects spend outdoors (outdoor mean; see Materials and Methods 

for description). Small amount of random noise was added to point coordinates to improve visualization. Note that for some study subjects, there are two to 

three observations in this graph, but for readability, they are not highlighted. In the GLMM models, the study subject was included as a random effect.
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DISCUSSION

Although our understanding of the positive effects of microbes on planetary and 
human health is improving, most research on microbial dispersal thus far has focused 
on negative health effects of microorganisms including transmission routes of human 
pathogens and of antimicrobial resistance genes (41). We explored if the proportion 
of ASVs shared between human and deposit samples could be used as a measure 
of dispersal. We then evaluated these data in the context of characteristics of the 
living environment and of the biodiversity hypothesis (4). We assumed that, in general, 
environmental microbial communities benefit human health.

Our first hypothesis that there are more shared bacteria when there is an indoor pet 
(dog or cat) in the household was not supported: none of the final models included 
indoor pets. Only for the initial models with saliva data was this variable significant, 
but—contrary to our hypothesis—the association was negative. Similarly, our second 
hypothesis that there are fewer shared bacteria for those who wash hands often was 
not supported. In the initial and final models, handwashing appeared only in interaction 
terms with timepoint, making its importance difficult to interpret.

We also hypothesized that outdoor recreation or gardening, the number of days 
the doormat has been in use, and the number of persons living and visiting the 
residence would have a positive relationship with the number of shared bacteria. Of 
these variables, outdoor recreation had a negative relationship with shared bacteria in 
saliva in winter and in feces in spring. The pattern for feces seemed to be strongly driven 
by two exceptional observations. Alas, more data are needed to confirm if this pattern is 
real. For saliva data, outdoor recreation had a negative association in winter. Results are 
further discussed in the following paragraphs.
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FIG 7 Scatter plots of most important variables in saliva GLMMs. Percentage of shared ASVs in saliva samples in winter plotted against the coverage of outdoor 

recreation and built environment.
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For the degree of urbanization, we set no preassumptions. The coverage of built 
environment that was used as a proxy for urbanization appeared to have significant, but 
opposite, relationships with shared bacteria in saliva and skin data. When the amount 
of built environment increased, the proportion of shared ASVs increased in saliva but 
decreased in the skin. It is possible that there are more environmental bacteria on skin 
than in saliva, and simultaneously more human-originated bacteria on doormat in urban 
than in rural areas (see also 12). In other words, the increasing shared ASVs with built 
environment in our saliva data could be due to increasing proportion of human-associ
ated bacteria in doormat in urban houses. Likewise, the decreasing shared ASVs with 
built environment in skin data could be due to increasing environmental bacteria on 
skin.

This could also explain why outdoor recreation was negatively associated with the 
proportion of shared ASVs in saliva data in winter: if ASVs shared between the mat 
and saliva samples are mainly of human origin, then outdoor recreation could increase 
bacteria of environmental origin on the mats and thus decrease the number of shared 
bacteria.

These observations point to a limitation of the doormat sampling as the mats 
accumulate bacteria of both environmental and human origin especially when the 
doormats are placed indoors as in the present study. These findings, however, also 
highlight the complexity of dispersal as a multidirectional phenomenon. Indeed, it is 
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FIG 8 Scatter plot of most important variables in skin GLMMs. Percentage of shared ASVs in skin samples plotted against the coverage of built environment. The 

size of the bubble is related to the number of effective sampling days. An additional brown square denotes study subjects who did gardening at least monthly. 

All the other subjects did gardening more rarely. Note that for some study subjects, there are two observations in this graph, but for readability, they are not 

highlighted. In the GLMM models, study subject was included as a random effect.
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important to consider not only the dispersal volume but also its direction as well. To be 
able to estimate the origin of bacterial ASVs, especially in the mat samples, environmen
tal bacterial samples from outdoors and deposit samples indoors may be informative.

Season also was important as a main effect as well as in several significant interac
tions with other variables, suggesting an important seasonal effect. In the saliva data, the 
proportion of shared ASVs was highest in the winter. This observation may be attributa
ble to the winter activities, when people in Finland usually spend more time indoors, 
and more oral human microbiota deposit on to the mat. In spring, on the other hand, 
people often spend more time outdoors, thus increasing the transport of environmental 
bacteria onto doormats. In winter, the proportion of environmental bacteria on doormats 
may also decrease because of snow cover, which potentially decreases the transport of 
environmental bacteria indoors (31).

Based on previous studies showing frequent microbial oral-gut transmission (42, 43), 
it is somewhat surprising that our data showed only few shared ASVs between saliva and 
fecal samples (Fig. 4). Methodological differences may explain this result. For example, 
the selection of variable region (V4 vs V3–V4), use of taxonomic resolution (ASVs vs 
operational taxonomic units or genera), number of observations and timepoints as well 
as sequencing method (16S rDNA vs shot-gun sequencing) all affect the detection of 
shared taxa and complicate direct comparisons across studies. Importantly, our aim was 
not to identify which species are shared or to reveal the absolute number of shared 
ASVs. Instead, we searched for relationships between the proportion of shared ASVs 
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FIG 9 Scatter plot of the most important variable in skin GLMMs. The percentage of shared ASVs in skin samples in the spring data set is plotted against the 

coverage of built environment.
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and a group of explanatory variables that may affect the dispersal of bacteria from 
environment to human and vice versa.

Additionally, the taxonomic composition in this study seems different from other 
papers. For example, in our saliva data, phylum Fusobacteria dominated, although 
usually it does not (44). This may be attributable to our choice to remove all ASVs present 
in any of the negative controls. We made this choice to account for contamination 
during sampling (e.g., from the sampling personnel), in the laboratory (e.g., reagents or 
cross-contamination), or sequencing [“barcode hopping” (45)]. We are aware that this 
kind of contaminant removal may also remove ASVs representing the sample and is 
generally not recommended (45). However, such contamination could have introduced 
same contaminants to several sample types and thus could lead to false detection of 
shared bacteria. Hence, we selected this very rigorous way to deal with contamination. 
It is important to note that our primary research aim was not to identify which taxa are 
shared or to enumerate shared ASVs. Instead, we searched for relationships.

Today, microbial studies are often encouraged to reveal bacterial functions or activity 
by the use of metatranscriptomics, metaproteomics, and metabolomics (11). However, in 
the context of this paper, simple detection of DNA was justified. As the human immune 
system is also stimulated by bacterial structures, the stimulation need not rely on 
bacterial functioning or their metabolic activity; i.e., even inactive or dead bacteria can 
be important (46). Additionally, immune system stimulation may not require bacterial 
establishment, but temporary encounters also can be important.
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FIG 10 Scatter plot of the most important variables in fecal GLMMs. The percentage of shared ASVs in skin samples is plotted against the index representing the 

general amount of time the study subject spent outdoors. Note that the pattern is strongly driven by two exceptional observations.
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Here we aimed to inspect bacterial dispersal at relatively large spatial scales that do 
not allow experimental manipulation of bacterial dispersal. A significant improvement 
to a study of this kind would be to include also purely environmental bacterial samples 
from outdoors and to deposit samples indoors to enable determination of the origin of 
the bacteria in both doormat and human samples. Moreover, using collectors installed 
on residents’ clothing could reveal missing links of bacterial dispersal from environment 
to humans. Another possible line of further research could be to split the bacterial 
community data into assemblages based on dispersal related traits such as dormancy or 
sporulation (19). Such approaches have been used with other organismal groups (47, 48) 
and could also be applied for human-associated bacteria.

Conclusions

Our results suggest that studying bacterial taxa that are shared between human and 
the living environment is an approach that could be developed further for studying the 
drivers of bacterial dispersal. As skin and saliva bacterial communities had opposing 
relationships with the degree of urbanization, the results also suggest that different 
human bacterial communities may differ in their dispersal. This might be related to 
differing species pools in urban and rural environments. In the future, a similar approach 
aiming to study the bacterial dispersal at large scales should be accompanied with a 
more comprehensive sampling scheme, including also non-human sampling locations 
indoors and outdoors.

MATERIALS AND METHODS

In this study, we used human and environmental bacterial samples collected from 53 
elderly people (65–80 years) residing within the city of Lahti and surrounding rural 
municipalities in Southern Finland [see also reference (33)]. Participants were initially 
selected from a large prospective study called Good Aging in Lahti Region (49). Partly 
the same bacterial data have been used in previous studies (31, 33, 36, 50, 51). Of the 
participants whose samples were suitable for this study, 24 lived in the urban block of 
flats in the city of Lahti and 29 lived in rural areas in detached single-family houses 
outside densely populated communities.

For the original sample collection, we used several exclusion criteria when select
ing participants. Thus, at the onset of the study, the participants did not suffer from 
any non-communicable chronic diseases affecting the immune response, including 
diabetes, chronic obstructive pulmonary disease, celiac disease, psoriasis requiring 
medication, dementia, multiple sclerosis, asthma with cortisone treatment, or cancer 
(active treatment during the last year or largely spread). We also excluded daily 
smokers and subjects on immunosuppressive or cortisone medications. Only observa
tions preceded by at least 6 months without using any antibiotics were included in 
this study. Because of the aims of the original studies, the initial selection of the study 
subjects aimed to exclude pet owners in the urban area, although this criterion was later 
abandoned because of practical reasons. This, however, partly affected the sparse and 
unequal distribution of pet owners; i.e., there were less pet owners in urban than rural 
areas.

The table of data characteristics (Table 3) shows that the data sets included in this 
study consisted of slightly more males than females; this was especially true for fecal 
data. The number of study subjects in each of the data sets varied between 16 and 
37. Many of the study subjects had gardening as a hobby (5–18 per data set doing 
gardening at least monthly), while much fewer had indoor pets (2–7 per data set). 
Percentage of built environment within a 100-m radius from the home varied in some 
data sets maximally (i.e., 0% and 100%) but at least between 0% and 89%.
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Sampling

Environmental bacteria deposited on doormats as well as human saliva and fecal 
samples were sampled in spring (June 2015), autumn (August 2015), and winter 
(February 2016). Skin swab samples were collected in spring (May 2015) and autumn 
(August 2015).

In spring, skin swabs were collected by a nurse who visited the participants in May 
2015 (ca. 2 weeks before the collection of the other sample types in June). In August, skin 
swabs were taken by the participants following the instructions provided by the nurse. 
A sterile cotton swab was first soaked in solution containing 0.1% Tween 20 in 0.15-M 
NaCl in a sterile polyethene sample tube. Then an area of 2 × 2 cm in the middle of the 
forearm was carefully wiped, and the stick was cut and placed back to the sample tube 
with the solution. Skin swabs were either immediately placed in dry ice for transportation 
or first stored in a home freezer (−20°C) and then transported in dry ice. In the laboratory, 
samples were stored at −80°C until analyzed.

Saliva, feces, and environmental samples were collected in June and August 2015 
and February 2016. Saliva samples were collected by the participants following detailed 
instructions. Samples were collected in the morning prior to eating, drinking, or brushing 
teeth. Three saliva swabs were collected. Each swab was placed under the tongue for 40 
seconds, after which it was twiddled in the mouth and placed again under the tongue 
until the swab was saturated (total sample time for each swab ca. 1 min). Participants 
were instructed to take fecal samples with a sampling kit including a clean disposable 
cardboard plate and polyethylene fecal sample collection tubes. Immediately after taking 
saliva and fecal samples, the participants stored the samples in the household freezer 
(usually −20°C). A few days later, the study personnel transported the samples in dry ice 
to be stored at −80°C until analyzed.

When retrieving the human samples, the study personnel simultaneously collected 
the microbial samples from doormats [see also reference (33)]. Similar scraper plastic 
doormats (surface area 45 × 57 cm) were placed indoors immediately at the main 
entrance door of the study participant’s home for approximately 2 weeks. When 
collecting the samples from the doormats, any large organic matter (e.g., leaves and 
twigs) was first collected by hand using clean disposable gloves. The doormat was then 
turned upside down on a clean aluminum foil and tapped all over for about 10 seconds. 
The material on the foil was then transferred into a clean zipper plastic bag. The bag was 
sealed airtight and frozen immediately in dry ice for transportation and then stored at 
−80°C until analyzed.

DNA extraction, amplification, and sequencing

Bacterial communities were analyzed using amplicon sequences of the hypervariable 
V4 region within the 16S rDNA sequenced by Illumina MiSeq (2 × 300 bp, v.3 reagent 
kit; Illumina, San Diego, CA, USA). From saliva samples, DNA was extracted using 
PowerSoil DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA), amplified 
using two-step PCR protocol (33) in CD Genomics (Shirley, NY, USA) and sequenced by 
the Integrated Genomics Facility at Kansas State University (Kansas, USA). Skin swab 
samples were extracted using Fast DNA spin kit for soil (MP Biomedicals, Santa Ana, 
CA, USA), amplified using two-step PCR protocol (52) in Environmental Laboratory 
(Lahti, Finland), and sequenced in the Institute for Molecular Medicine Finland FIMM 
(Helsinki, Finland). For fecal samples, 30–60 mg of frozen and unprocessed feces was 
used for DNA extraction with PowerSoil DNA Isolation Kit (MoBio Laboratories, Inc.) and 
amplified with one-step PCR protocol. Fecal samples were processed and sequenced 
in Charles University, Prague, Czech Republic using one-step PCR protocol (53). For 
doormat samples, at maximum, three replicates of 0.25 g of doormat debris were used 
for DNA extraction with PowerSoil DNA Isolation Kit (MoBio Laboratories) and amplified 
with two-step PCR protocol in Environmental Laboratory [see details from reference (33)]. 
Doormat samples were sequenced by the Integrated Genomics Facility at Kansas State 
University. Slightly varying protocols were justified based on experiences on different 
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sample types and the large number of samples inefficient to be processed in a single 
laboratory. It is noteworthy that protocols do not differ within a sample type and thus do 
not interfere with the variation within each sample type. Altogether, 26 negative controls 
from extraction and PCR were also sequenced, but the number and type of controls 
slightly varied between sequencing batches.

Bioinformatics

Paired-end sequence data (.fastq) from the rRNA gene data set of bacterial communities 
were processed using Mothur [v.1.43.0 and 1.44.1 (54)] mainly following previously 
published protocols (53, 55). Sequences for each sample type were first aligned into 
contigs after which files were merged and further processed simultaneously in one 
bioinformatic session. Sequences were screened to remove any sequences longer than 
360 bp, with ambiguous bases or homopolymers larger than 8 bp long.

Sequences were aligned using Mothur version of SILVA bacterial reference [v.102 
(56)]. Sequences were screened and filtered to start and end at the same place, which 
simultaneously removed primer sequences from those samples that were processed 
with two-step PCR (i.e., doormat, saliva, and skin) because fecal sample sequences did 
not include primer parts as they were processed with one-step PCR. Almost identical 
sequences (>99% similar) were preclustered to ASVs (57) and screened for chimeras with 
UCHIME (58), which uses the abundant sequences as a reference. The chimeric sequen
ces were removed. Sequences were classified using the Mothur version of Bayesian 
classifier (59) with the RDP training set v.16 (60). Sequences classified to chloroplast, 
mitochondria, unknown, Archaea, and Eukaryota were removed from the analyses. ASVs 
represented with one in the whole data were considered as sequencing errors and were 
removed (61). Finally, all ASVs that were present in any of the negative controls were 
removed from the data. ASV level was selected because we were especially interested in 
bacterial fauna that is shared between doormat samples and human samples, and as the 
ASV level allows a difference of only 2 bp, it most probably reveals if the same bacterial 
species exists. However, it should be noted that when using only one variable region of 
16S gene, it is possible that some of the shared ASVs do not belong to the same bacterial 
species.

Numerical analyses

Data were first visualized using KRONA (40). All the other analyses and figures were done 
using RStudio [v.2022.07.2 (62)] and R [v.4.0.0 and 4.1.3 (63)]. The number of shared ASVs 
in each sample type was visualized using Venn diagrams [package VennDiagram (64)].

ASV data were subsampled to account for varying library sizes. Subsampling was 
conducted within each sample type, and the level of subsampling was selected as the 
lowest number of sequences in each sample type (range 1,002–1,208).

We used principal coordinate analysis (PCoA) to visualize communities simultane
ously among all sample types. PCoA was run using function cmdscale in package 
stats. Permutational multivariate analysis of variance (PERMANOVA) (65) was run using 
package vegan (66) and pairwise contrasts using package RVAideMemoire, 67). Permuta
tional test of multivariate homogeneity of group dispersions (PERMDISP, 68) was run 
using package vegan. PERMANOVA and PERMDISP were run corresponding to each PCoA 
figure using 999 permutations and using three different distance measures (functions 
vegdist and decostand in package vegan): Bray-Curtis distance, Sørensen (i.e., Bray-Curtis 
distance for presence-absence data), and Hellinger (i.e., Euclidean distance for Hellinger 
transformed data; 69).

Generalized linear mixed-effects models

We used lme4 (70) to perform a generalized linear mixed-effects model (GLMM) for the 
relative number of shared ASVs. Because the total amount of ASVs is likely to affect the 
number of shared ASVs, we counted the proportion of shared ASVs of the total number 
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of ASVs found in a given human sample. We used binomial family in GLMM because of 
the proportional nature of the dependent variable (71). Timepoint was always included 
in the models as a fixed effect and person ID as a random effect. If the initial model did 
not converge, we used an optimizer (“bobyqa”) to solve the issue.

Forward selection was used to find final models. First, explanatory variables were 
analyzed one by one to check if there was an interaction between the given explanatory 
variable and timepoint (see flowchart in Fig. S1). If the interaction was absent, a new 
model without interaction was built. These models were used to select the first variable 
with the lowest (and below 0.05) P value. Next, each of the remaining explanatory 
variables and significant interactions was included one by one, and each candidate 
model was compared to the preceding model using the function anova(). The second 
variable entered to the model was that with the lowest Akaike Information Criterion 
value (AIC). This procedure was carried on until the new variables no longer made the 
model better. To avoid too complex models, we used three as a threshold; i.e., if the 
AIC for the more parsimonious model was less than three smaller compared to the AIC 
for the more complex model, we stopped the selection procedure and selected the 
parsimonious model. Because there were also some significant interactions, we ran a 
similar procedure for each timepoint separately. There were some observations missing 
for some of the variables. For the first step of variable selection, we removed only the 
rows with missing data for a given variable. For the next steps of the variable selection, 
all the rows with missing information were removed. Finally, we reran the final models 
using data where only the rows with missing information in the selected variables were 
removed.

There were altogether seven explanatory variables that were used to build the final 
models. Percentage of built environment (including hardscapes) within a 100-m radius 
from the study subject’s home (variable name “built”) was estimated using the CORINE 
Land Cover 2012 database. All the other variables were based on questionnaires filled by 
the study subjects. There were binomial variables indicating the presence/absence of a 
dog or cat living inside the home (“pets”), if the study subject washed his/her hands at 
maximum once a day or several times a day (“handwashing”), and if the study subject 
did gardening at least monthly or less often (“gardening”). The following variables were 
treated as continuous variables. The mean value for outdoor recreation (“outdoor”) was 
counted from altogether 11 outdoor activities (walking, cycling, hiking, berry picking, 
mushroom picking, hunting, fishing, birdwatching, horse riding, gardening, and other 
outdoor recreation) that had been reported using a Likert scale ranging from 1 (“never”) 
to 5 (“daily”), although the maximum value reported was 4 (“weekly”). The number of 
days the doormat was effectively in use (“real.mat.days”) was counted by subtracting the 
number of days there was nobody home from the number of days the doormat was in 
use. The number of persons living or visiting the household (“number.of.persons”) during 
the use of the doormat were collected as a categorical variable (1–10, >10), but it was 
coded as a continuous numerical variable with values from 1 to 5 to simplify the model 
interpretation. Residuals of the GLMM models were inspected using package DHARMa 
(72). Some models showed significant quantile deviations or overdispersion/underdis
persion. However, based on a visual inspection, we evaluated the models as acceptable 
(Fig. S4 to S8), given that the main purpose of this study is rather explore the possible 
correlations with shared ASVs than making predictions.

In the early stage of this study, we conducted the analyses with the complete data 
set, i.e., including also those observations where the study subject had used antibiotics 
in last 6 months prior to sampling. There were 10, 8, and 9 such observations in saliva, 
skin and fecal data, respectively. Possibly due to very scattered data, together with the 
presumably strong effect of antibiotics, the models did not work well (data not shown). 
Thus, we decided to remove these observations. All the numbers of samples and study 
participants reported earlier in this paper refer to the final data set used in the analyses.
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