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A B S T R A C T   

Decades after most countries banned hexachlorocyclohexane, HCH isomers still pollute the environment. Many 
studies described HCH as a pro-diabetic factor; nevertheless, the effect of HCH isomers on pancreatic beta-cells 
remains unexplored. This study investigated the effects of a one-month exposure to α-HCH, β-HCH, and γ-HCH on 
protein expression in human (NES2Y) and rat (INS1E) pancreatic beta-cell lines. α-HCH and γ-HCH increased 
proinsulin and insulin levels in INS1E cells, while β-HCH showed the opposite trend. α-HCH altered the 
expression of PKA, ATF3, and PLIN2. β-HCH affected the expression of GLUT1, GLUT2, PKA, ATF3, p-eIF2α, ATP- 
CL, and PLIN2. γ-HCH altered the expression of PKA, ATF3, PLIN2, PLIN5, and IDH1. From the tested proteins, 
PKA, ATF3, and PLIN-2 were the most sensitive to HCH exposure and have the potential to be used as 
biomarkers.   

1. Introduction 

Most countries have banned hexachlorocyclohexane (HCH) mixtures 
and their-HCH isomers, such as lindane, decades ago. Nevertheless, even 
without fresh input, HCH isomers remain a burden to the environment 
due to their persistence. The number of scientific papers recently pub
lished with HCH as a keyword shows that HCH pollution of the envi
ronment remains a current problem (Capparelli et al., 2023; Gandla 
et al., 2023; Iwasaki et al., 2023; Rafeeinia et al., 2023; Reina-Perez 
et al., 2023; Xu et al., 2023). 

Three HCH isomers dominate the HCH pollution of the environment: 
α-HCH, β-HCH, and γ-HCH. In the last two years (2021–2022), their 
presence has been detected worldwide, including lake sediments in 
Northeast China (Zhao et al., 2022), bovine milk (Sharma et al., 2021), 
drinking water in Mexico (Rodriguez et al., 2022), and Brazil (Panis 
et al., 2022), Nigerian food crops (Omeje et al., 2021), sediments in 
Indonesia (Oginawati et al., 2022), agricultural soils in Tanzania (Nyi
hirani et al., 2022), surface sediments in Antarctica (Ma et al., 2021), a 
coal mining subsidence area in China (Chen et al., 2022), river waters in 
Iran (Fard et al., 2022), the breast milk of women in China (Dong et al., 
2022), vegetables from India (Sharma et al., 2022), fish from the Nile 

river, Egypt (Saleh et al., 2021) and adipose tissue of people from 
Southern Spain (Salcedo-Bellido et al., 2022). 

HCH isomers can enter humans through food, water, air, or through 
the skin (Chen, 2005). Our fat tissue stores a large portion of HCH iso
mers that enter our body; in rats, isomers also accumulate in the brain, 
liver, or kidney (Chen, 2005). The toxicity of the three HCH isomers 
differs. γ-HCH is neurotoxic: acute exposure to lindane causes ataxia, 
disorientation, tremors, seizures, and death, while chronic exposure 
inhibits liver function, causes cardiac arrhythmias, and affects the 
menstruation cycle (Nolan et al., 2012). The acute effects of α-HCH, 
which consists of two optical isomers, are quite similar to those of 
γ-HCH: it works as a neurostimulant and convulsant (Chen, 2014). 
However, unlike γ-HCH, which interferes with estrogen signaling (Briz 
et al., 2011), both enantiomers of α-HCH inhibit androgen receptor ac
tivity (Pavlikova et al., 2012). The fate of α-HCH enantiomers differs 
depending on the environment: e.g., in polar mammals, (+)-α-HCH is 
more abundant than (-)-α-HCH due to its higher ability to biomagnify 
(Wiberg et al., 2000). β-HCH is primarily a neuro depressant (Chen, 
2014) and has xenoestrogen activity (Imazaki et al., 2015; Steinmetz 
et al., 1996). 

Concerning the connection between the presence of 
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hexachlorocyclohexane isomers in the human body and diabetes, the 
epidemiological studies are persuasive: higher β-HCH levels in organ
isms correlate with the incidence of diabetes (Berg et al., 2021; Gasull 
et al., 2018; Han et al., 2020; Ryander et al., 2015; Schwarz et al., 2021; 
Tyagi et al., 2021; Zong et al., 2018). Also, β-HCH was one of four 
organochlorine pollutants whose presence correlated with decreased 
insulin secretion in humans (Lee et al., 2017). However, data concerning 
the effects of α- and γ- isomers are scarce (Al-Othman et al., 2014). 

Only a few published studies describe the effects of β-HCH on 
pancreatic beta cells: β-HCH exposure increased ROS production and 
decreased insulin secretion by rat pancreatic beta cells RIN-m5F (Park 
et al., 2020) and significantly decreased insulin secretion and increased 
insulin content in the rat pancreatic beta cells INS1E (Lee et al., 2017). 
However, published studies on pancreatic beta-cells are limited to 
detecting oxidative stress and insulin production. Indeed, there is no 
extant data about the effects of α-HCH and γ-HCH on pancreatic 
beta-cells. This study aimed to test how a one-month exposure to α-, β-, 
or γ-HCH affected the expression of proteins related to the survival and 
function of human and rat pancreatic beta-cells. The HCH isomers differ 
only in the position (axial or equatorial) of chlorines, so we wanted to 
evaluate how such differences affect their impact on pancreatic 
beta-cells. We were interested in finding changes in protein expression 
that might compromise cells’ survival and function in the longer term. 
Another aim of this study was to detect proteins sensitive to exposure to 
pollutants in pancreatic beta-cell lines that could be potentially used as 
biomarkers. 

2. Material and methods 

2.1. Material 

We obtained α-HCH (α-1,2,3,4,5,6-Hexachlorocyclohexane; 
33856–50MG), β-HCH (β-1,2,3,4,5,6-Hexachlorocyclohexane; 
33376–100MG), lindane (γ-1,2,3,4,5,6-Hexachlorocyclohexane; 
45548–250MG), and RPMI medium from Sigma-Aldrich (Merck Life 
Science, Prague, Czech Republic). The primary antibodies to ATP citrate 
lyase, aconitase 2, isocitrate dehydrogenase 1, glutathione reductase, 
superoxide dismutase 1, binding immunoglobulin protein, phosphory
lated inositol-requiring enzyme 1α (S724), and hypoxanthine-guanine 
phosphoribosyltransferase were purchased from Abcam (Abcam, Cam
bridge, UK); primary antibodies to biliverdin reductase B, glucose 
transporter 1, glucose transporter 2, perilipin-2, and perilipin-5 from 
Fisher Scientific (Thermo Fisher Scientific, Rockford, IL, USA); primary 
antibody to activating transcription factor 3, and actin from Sigma- 
Aldrich (Merck Life Science, Prague, Czech Republic); and primary 
antibody to phosphorylated protein kinase A (Thr197) from Cell 
Signaling (https://www.cellsignal.com). To determine protein concen
trations, Pierce™ B.C.A. Protein Assay Kit was used (Thermo Fisher 
Scientific, Rockford, IL, USA). 

2.2. Cell culture 

For our experiments, we used the human pancreatic beta-cell line 
NES2Y with constitutive insulin secretion (kindly provided by Dr. Roger 
F. James, Department of Infection, Immunity and Inflammation, Uni
versity of Leicester) and the rat pancreatic beta-cell line INS1E with 
glucose-stimulated insulin secretion (kindly provided by Dr. Claes B. 
Wollheim at the Centre Medical Universitaire de Genève, Geneva, 
Switzerland). The cells were cultured in a medium based on RPMI 1640, 
containing phenol red, L-glutamine, sodium pyruvate, HEPES, peni
cillin, streptomycin, and supplemented with 10% fetal bovine serum 
(FBS), as previously described (Pavlikova et al., 2015). The cells were 
maintained in a humidified atmosphere of 5% CO2 in air at 37 ◦C. 

2.3. Neutral red assay 

The cells were seeded into a 96-well microplate using the medium 
described above: the NES2Y cells at a density of 10 000 cells per well and 
INS1E cells at a density of 45 000 per well. After 24 h (for NES2Y cells) 
or 48 h (for INS1E cells), the cells were exposed to DMSO (dimethyl 
sulfoxide, solvent control) or the tested concentrations of α-HCH, 
β-HCH, or γ-HCH. The concentration of DMSO (in which HCH isomers 
were dissolved) in the medium did not exceed 0.5%. We tested the 
following HCH isomers concentrations: 10 nM, 100 nM, 1 μM, 10 μM, 
and 100 μM. After 24 h and 48 h, the viability of cells was measured 
using a protocol developed by (Repetto et al., 2008) with modifications 
according to (Pavlikova et al., 2012). The medium with HCH isomers 
was removed, and cells were washed twice with PBS. Then, 100 μl of 
medium containing neutral red, prepared according to (Repetto et al., 
2008), was added to each well with cells and three empty wells (later 
used as blank), and the microplate was incubated at 37 ◦C for two hours. 
After incubation, the medium was removed, the cells were washed 
carefully with PBS and lysed using 200 μl of lysing buffer per well (1% 
acetic acid in 50% ethanol). The absorbance was measured at 570 nm. 

2.4. Exposure to pollutants 

We maintained NES2Y and INS1E cells in a usual way (NES2Y were 
passaged twice per week; INS1E once per week and, after four days, the 
medium was replaced with a fresh one) in a medium containing 10 μM 
α-HCH, β-HCH, γ-HCH, and DMSO as solvent control. The concentration 
of DMSO (the stock solutions of hexachlorocyclohexane isomers were 
dissolved in DMSO) was 0.5%. After one month, cells were subjected to 
further analysis. 

2.5. Western blot 

After the one-month exposure to HCH isomers, the cells were tryp
sinized, washed three times with PBS, and the cell pellet was frozen at −
80ᵒC for at least twelve hours. The next day, the pellet was dissolved in 
RIPA lysis buffer and incubated for at least one hour at 4ᵒC. The samples 
were centrifuged to separate the protein solution from cell debris, and 
the supernatants were transferred into a new Eppendorf tube. The pro
tein concentrations were quantified employing the BCA commercial kit. 

We performed western blotting as described previously (Nem
cova-Furstova et al., 2019; Sramek et al., 2019) with minor modifica
tions. 20 μg samples of total protein (whole cell lysates) and 10% or 12% 
polyacrylamide were used for separation. After the electrophoresis, 
proteins were blotted to the nitrocellulose membrane (70 min, 100 V) 
employing a Bio-Rad device. The membrane was blocked using 5% 
low-fat milk in TBST for 60 min, and then it was changed for the primary 
antibody. 

We applied the following dilutions of primary antibodies: 1:1000 for 
the rabbit monoclonal antibody to ATP citrate lyase (ATP-CL; ab40793), 
1:1000 for the rabbit monoclonal antibody to aconitase 2 (ACO2; 
ab129069), 1:1000 for the rabbit monoclonal antibody to isocitrate 
dehydrogenase 1 (IDH1; ab172964), 1:1000 for the rabbit polyclonal 
antibody to glutathione reductase (Glu-Red; ab16801), 1:1000 for the 
rabbit monoclonal antibody to superoxide dismutase 1 (SOD1; 
ab51254), 1:1000 for the rabbit polyclonal antibody to biliverdin 
reductase B (BLVRB; 17729–1-AP), 1:5000 for the rabbit polyclonal 
antibody to phosphorylated protein kinase A (Thr197) (p-PKA; #4781), 
1:300 for the rabbit polyclonal antibody to cyclic AMP-dependent 
transcription factor (ATF3; HPA001562), 1:10 000 for the rabbit poly
clonal antibody to binding immunoglobulin protein (BiP; ab21685), 
1:500 for the rabbit polyclonal antibody to the phosphorylated inositol- 
requiring enzyme 1α (S724) (p-IRE; ab48187), 1:5000 for the rabbit 
polyclonal antibody to the phosphorylated eukaryotic translation initi
ation factor 2 A (Ser51) (p-eIF2α; #9721); 1:1000 for the rabbit poly
clonal antibody to glucose transporter 1 (GLUT1; 21829–1-AP); 1:1000 
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for the rabbit polyclonal antibody to glucose transporter 2 (GLUT2; 
20436–1-AP); 1:1000 for the rabbit polyclonal antibody to perilipin 2 
(PLIN2; 15294–1-AP), and 1:1000 for the rabbit polyclonal antibody to 
perilipin 5 (PLIN5; 26951–1AP). As a loading control, we used dilution 
1:1000 for the mouse polyclonal antibody to beta-actin (act; a3853) or 
1:10 000 for the rabbit polyclonal antibody to hypoxanthine-guanine 
phosphoribosyltransferase (HPRT; ab109021). After washing three 
times with PBS, the corresponding horseradish peroxidase-conjugated 
secondary antibodies were used (Proteintech: SA00001–1, 
SA00001–2). The chemiluminescent signal was detected using the 
Supersignal reagent from Pierce (Rockford, IL, USA) and the ChemiDoc 
device (Bio-Rad). 

2.6. ELISA 

The intracellular insulin and proinsulin level was determined using 
commercial ELISA kits (Mercodia, Uppsala, Sweden; 10–1232–01, 
10–1250–01) following the manufacturer’s instructions. The protein 
samples were diluted to stock solutions of 1 μg/ μl. Then, the stock so
lutions were diluted 1:2000 with the Mercodia Diabetes Sample Buffer 
(Mercodia, Uppsala, Sweden, 10–1195–01) and used for experiments. 
After the ELISA experiment, the protein concentrations of the 1 μg / μl 
sample solutions were measured using the BCA kit (Pierce™ BCA Pro
tein Assay Kit, #23227). The results from ELISA were adjusted to the 
actual concentrations of the stock solutions. 

2.7. Statistical analysis 

We determined statistical significance by one-way ANOVA – Dun
net’s test employing SigmaPlot 14.0. 

3. Results and discussion 

Persistent pollutants are stored in human fat tissue and, from there, 
slowly released into the blood. Therefore, human beta-cells are exposed 
to potentially growing concentrations for their entire lifespan. If it were 
possible to mimic this exposure in lab conditions, measuring insulin 
secretion after exposure would represent the only information needed to 
evaluate the toxic potential of the measured pollutants. Unfortunately, 
in lab conditions, the exposure time is limited. Most in vitro experiments 
measured insulin secretion after one or two days of exposure (Lee et al., 
2017; Park et al., 2021); in the case of in vivo experiments, the exposure 
time usually reached several weeks (Bahadar et al., 2015; 
Cetkovic-Cvrlje et al., 2016). If such experiments showed no alterations 
in insulin secretion, the question is whether it follows that a one-year 

Table 1 
The chemical structure and log KO/W of hexachlorocyclohexane isomers. The log 
KO/W values were taken from (Xiao et al., 2004).  

Name Chemical structure Log Koctanol/ 

water (25ᵒC) 

α-HCH 

(+)-α-HCH (-)-α-HCH  

3.81 

β-HCH 3.80 

γ-HCH 3.72  

Fig. 1. The viability of rat pancreatic beta-cells INS1E and human pancreatic beta-cells NES2Y when exposed to 10 nM, 100 nM, 1 μM, 10 μM, and 100 μM of α-HCH, 
β-HCH, and γ-HCH for 48 h detected by a Neutral red assay. The graph shows the average of three independent experiments ± SEM. * * means statistical significance 
(p < 0.01) determined by ONE-WAY ANOVA (Dunnet’s test). 

Fig. 2. The levels of intracellular insulin and proinsulin in rat pancreatic beta- 
cells INS1E exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for 
one month detected by a commercial ELISA kit. The graph shows the average of 
four independent experiments ± SEM. * ** means statistical significance 
(p < 0.001), * means statistical significance (p < 0.05) determined by ONE- 
WAY ANOVA (Dunnet’s test). 
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exposure to the same concentration of the same chemical would have 
the same effect. Currently this is not possible to predict and long-term 
exposure to pollutants may gradually affect the pancreatic beta-cells 
homeostasis. Subtle protein expression or function changes can pre
cede an actual alteration of beta-cell core function. The changes can 
build up over time and only then alter insulin secretion. 

Our project focused on how exposure to HCH isomers altered protein 
expression in pancreatic beta-cells, including proinsulin and insulin 
expression. We searched for small changes in the expression of proteins 
participating in insulin production regulation and beta-cell survival. 
Such proteins could be indicators of future beta-cell dysfunction and 
used for toxicity monitoring. Because one-month exposure is still much 
shorter than the typical human exposure, we decided to use higher 
concentrations than are usually detected in humans. Most detected HCH 
concentrations in human organisms are detected as ng/g of lipids (Helou 
et al., 2019; Charles et al., 2022; Muller et al., 2019; Ploteau et al., 2016) 
which could not be used for the present study. In those few studies that 
detected HCH per volume, the highest serum concentrations reached 
0.5 μM (La Merrill et al., 2019; Lino and da Silveira, 2006). The con
centration used in our study – 10 μM – is consistent with other similar 
projects published (Park et al., 2020, 2021; Rubini et al., 2020). Also, the 
beta-cell lines were exposed to individual HCH isomers rather than their 
mixture. No universal ratio of HCH isomers in human organisms exists; 
therefore, this study focused instead on the individual isomers’ effects. 

For our experiments, we chose the human pancreatic beta-cell line 
NES2Y with constitutive insulin secretion and the rat pancreatic beta- 
cell line INS1E with glucose-stimulated insulin secretion. The human 

beta-cell lines with glucose-stimulated insulin secretion include mainly 
EndoβC cells, which are difficult to maintain and would probably fail to 
survive one-month exposure to pollutants; therefore, we chose the 
NES2Y human beta-cell line. The human and rodent beta-cell differ in 
several aspects, including GLUT transporter expression, ability to form 
lipid droplets, and others (Eizirik et al., 1994; Klemen et al., 2017; 
McCulloch et al., 2011). Therefore using a human cell line, albeit 
imperfect, can bring information that using, e.g., two rodent cell lines 
cannot. The in vitro system of our study reflects current trends in 
environmental toxicology, which prefer in vitro studies over in vivo due 
to sustainability and ethical reasons. 

As tested compounds, we used three stable hexachlorocyclohexane 
isomers: alpha, beta, and gamma (Table 1). Isomer alpha consists of two 
enantiomers; a racemic mixture 1:1 was used. Isomers differ in the po
sitions of chlorines (axial and equatorial), which causes different tension 
and a different shape of the molecule. 

3.1. Cell viability 

We determined the viability of NES2Y and INS1E cells after exposure 
to various concentrations of hexachlorocyclohexane (HCH) isomers for 
48 h by employing a Neutral Red Assay. From tested concentrations 
(10 nM, 100 nM, 1 μM, 10 μM, 100 μM), only the highest concentration 
- 100 μM – affected cell viability (Fig. 1). 100 μM α-HCH significantly 
decreased the human beta-cell viability to 87% of the control and the rat 
beta-cell viability to 93% of the control. The exposure to β-HCH failed to 
affect the cell lines’ viability. 100 μM γ-HCH significantly decreased the 

Fig. 3. The protein expression of ATP citrate lyase (ATP-CL), aconitase 2 (ACO2), and isocitrate dehydrogenase 1 (IDH1) in the rat (INS1E) pancreatic beta-cells and 
human (NES2Y) pancreatic beta-cells exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for one month detected by western blot. Actin or HPRT was used 
as a loading control. The graphs represent an average of densitometric analyses of at least four western blots made of four independent sets of samples ± SEM. Below 
each graph, a representative western blot is shown. * means statistical significance (p < 0.05), * * means statistical significance (p < 0.01), * ** means statistical 
significance (p < 0.001) determined by ONE-WAY ANOVA (Dunnet’s test). 

N. Pavlíková et al.                                                                                                                                                                                                                              



Environmental Toxicology and Pharmacology 104 (2023) 104299

5

viability of the human NES2Y cells to 72% of the control and the 
viability of the rat INS1E cells to 65% of the control (Fig. 1). 

The acute toxicity of HCH isomers at 100 μM correlated with their 
solubility in DMSO: β-HCH (the least soluble) showed no toxicity even at 
this high concentration, while γ-HCH (the best soluble) significantly 
decreased the cell viability. α-HCH was moderately soluble and showed 
medium toxicity. β-HCH has the most stable structure of the three iso
mers and biomagnifies (Porta et al., 2013). We expected it to affect the 
pancreatic beta-cell lines most in the long term due to correlations 
revealed by published epidemiological studies (see Introduction). 
Nevertheless, after 24 and 48 h, beta-HCH failed to affect cell viability. 

For all α-HCH and γ-HCH, the 10 μM concentration was the lowest 
concentration from our scale that did not affect the cell viability. 
Therefore, we used it for the one-month exposure for all HCH isomers. 
This concentration is higher than concentrations found in humans (the 
highest concentrations ranged from 1 to 2 μM) (Lino and da Silveira, 
2006), but our project was planned as a mechanistic study. Also, we 
have experience with this type of exposure from our previous work with 
DDT and DDE (Pavlikova et al., 2019; Pavlikova et al., 2015). (See 
Supplementary data Fig. S1 for changes in HCH isomer levels in cell 
media during exposure.). 

3.2. Intracellular insulin and proinsulin level in rat beta-cells 

In rat beta-cells, α-HCH increased the proinsulin level to 177% of the 
control and the intracellular insulin level to 140% of the control; both 
changes were statistically significant (Fig. 2). β-HCH decreased the 
proinsulin level to 87% of the control; the change was not significant 
when analyzed by Dunnet’s test (one-way ANOVA) but was significant 
when analyzed by the Student’s t-test. The intracellular insulin level also 
dropped, but only insignificantly. γ-HCH increased the proinsulin level 
to 166% of the control and the intracellular insulin level to 126% of the 
control; only the increase in proinsulin level was statistically significant 
(Fig. 2). 

We tested intracellular insulin and proinsulin levels only in INS1E rat 
pancreatic beta-cells; human NES2Y cells secrete insulin constitutively, 
and their insulin level is below the detection level. β-HCH slightly 
decreased the proinsulin level in rat INS1E cells; this change could 
participate in a pro-diabetic effect reported by epidemiological studies 
(see Introduction). In a short-term study (48-hour exposure), β-HCH 
(1 μM) increased the intracellular insulin level in rat INS1E cells and 
decreased insulin secretion (Lee et al., 2017). We hypothesize that the 
short-term and prolonged effects of β-HCH exposure may differ. 

Interestingly, α-HCH and γ-HCH had the opposite effect than β-HCH: 
they increased intracellular proinsulin and insulin levels. No published 
data exist about the effects of these two HCH isomers on insulin 

Fig. 4. The protein expression of binding immunoglobulin protein (BiP/GRP-78), inositol-requiring enzyme 1α (p-IRE1α), and phosphorylated eukaryotic initiation 
factor 2 (p-eIF2α) in the rat (INS1E) pancreatic beta-cells and human (NES2Y) pancreatic beta-cells exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for 
one month detected by western blot. Actin or HPRT was used as a loading control. The graphs represent an average of densitometric analyses of at least four western 
blots made of three independent sets of samples ± SEM. Below each graph, a representative western blot is shown. * means statistical significance (p < 0.05) 
determined by ONE-WAY ANOVA (Dunnet’s test). 
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production. Nevertheless, overproduction of insulin, if it is accompanied 
by insulin oversecretion, could lead to increased body weight (more 
secreted insulin means faster removal of glucose from the blood into 
tissues and becoming hungry again). Hoyeck and coworkers (Hoyeck 
et al., 2022) described the oversecretion of beta-cells as a result of 
exposure to some non-dioxin-like polychlorinated biphenyls; hypothet
ically, α-HCH and γ-HCH can induce a similar effect. In human organ
isms, studies usually detect more than one HCH isomer (Al-Othman 
et al., 2014; La Merrill et al., 2019; Muller et al., 2019; Tyagi et al., 
2021); therefore, the actual effect would depend on the ratio of the 
isomers present and the presence of other pollutants. 

3.3. Enzymes involved in metabolic pathways 

β-HCH significantly decreased the protein expression of ATP citrate 
lyase (ATP-CL) to 47% of the control in rat INS1E cells and 70% of the 
control in human NES2Y cells (Fig. 3). ATP-CL connects glucose and 
fatty acid metabolism by cleaving citrate into oxaloacetate and acetyl- 
CoA, a precursor of fatty acids. Some studies showed that ATP-CL in
hibitors - hydroxycitrate and radicicol - inhibited glucose-stimulated 
insulin secretion in beta-cells (Flamez et al., 2002; Guay et al., 2007). 
Moreover, one of the ATP-CL downstream products is malonyl-CoA, 

which affects insulin secretion in the presence of fatty acids (Roduit 
et al., 2004). These data show that ATP-CL products participate in in
sulin secretion. β-HCH decreased ATP-CL expression in both beta-cell 
lines. We hypothesize that this effect can participate in the predicted 
pro-diabetic activity of β-HCH. Interestingly, palmitate (a saturated fatty 
acid) also decreased the expression of ATP-CL in beta-cells (Chu et al., 
2010), besides causing other adverse effects on beta-cells viability and 
function (Chu et al., 2010). Hypothetically, exposure to β-HCH can 
potentiate adverse effects of saturated fatty acids on pancreatic 
beta-cells. Also, acetyl-CoA produced by ATP-CL is used for histone 
acetylation. Therefore, ATP-CL expression often correlates with acety
lated histone levels (Bradshaw, 2021; Dominguez et al., 2021; Icard 
et al., 2020). Nevertheless, we have not found that correlation in our 
samples (see Supplementary data, Fig. S2). 

γ-HCH significantly decreased the protein expression of isocitrate 
dehydrogenase 1 (IDH1) to 72% of the control in rat INS1Ecells and 74% 
of the control in human NES2Y cells (Fig. 3). Cytosolic isocitrate dehy
drogenase 1 (IDH1) produces NADPH while turning isocitrate into 
α-ketoglutarate. The NADPH produced by isocitrate dehydrogenase 1 
participates in insulin vesicle exocytosis (Campbell and Newgard, 
2021). γ-HCH decreased IDH1 expression in beta-cells, which could 
negatively affect insulin secretion. The increased intracellular insulin 

Fig. 5. The protein expression of phosphorylated protein kinase A (p-PKA) and activating transcription factor 3 (ATF3) in the rat (INS1E) pancreatic beta-cells and 
human (NES2Y) pancreatic beta-cells exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for one month detected by western blot. Actin or HPRT was used 
as a loading control. The graphs represent an average of densitometric analyses of at least four western blots made of a minimum of three independent sets of samples 
± SEM. Below each graph, a representative western blot is shown. * means statistical significance (p < 0.05), * * means statistical significance (p < 0.01), * ** means 
statistical significance (p < 0.001) determined by ONE-WAY ANOVA (Dunnet’s test). 
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level in rat INS1E cells could result from these changes. Nevertheless, 
α-HCH exposure failed to change IDH1 expression in rat INS1E cells but 
still increased intracellular insulin levels; therefore, another mechanism 
can participate in this increase. 

Mitochondrial aconitase 2 (ACO2) turns citrate into isocitrate and 
precedes IDH1 in the Krebs cycle. ACO2 remained unchanged after 
exposure to HCH isomers (Fig. 3). 

All three proteins mentioned above are enzymes. Altered protein 
expression of an enzyme does not necessarily mean an increased or 
decreased level of the enzyme products; it can represent a compensation 
mechanism for altered protein functionality. Nevertheless, we believe 
that after exposure for as long as one month, altered enzyme expression 
more likely affected enzyme productivity than not. 

3.4. Proteins involved in endoplasmic reticulum stress signaling 

The protein expression of binding immunoglobulin protein (BiP) and 
the phosphorylated form of inositol-requiring enzyme 1α (S724) (p- 
IRE1α) remained unchanged after exposure to HCH isomers (Fig. 4). 

The ER heat shock protein 70 family member BiP is an ATP- 
dependent chaperone that plays a critical role in unfolded protein 
response (UPR) during ER stress (Pobre et al., 2019). Inositol-requiring 
enzyme 1α (IRE1α) is an ER stress sensor (Marcu et al., 2002). The 
absence of increased BiP and p-IRE1α expression suggests that HCH 
isomers do not induce endoplasmic reticulum stress (ER stress) in 
beta-cells, at least not under the conditions used in our experiments. The 
ER stress represents a dangerous condition for beta-cells; it results in 
diminished insulin secretion and, if not contained, it leads to apoptosis. 

β-HCH significantly increased the expression of phosphorylated 
eukaryotic initiation factor 2α (p-eIF2α) to 239% of the control in rat 
beta-cells; in human beta-cells, the expression remained unchanged 
(Fig. 4). Eukaryotic initiation factor 2α (eIF2α) is a stress-sensitive 
repressor of translation when phosphorylated; it saves the cell energy 
by decreasing general protein biosynthesis while increasing the trans
lation of specific proteins involved in dealing with stress, e.g., ATF4 
(Humeau et al., 2020; Marks et al., 2017). Increased p-eIF2α levels in rat 
INS1E cells exposed to β-HCH showed that β-HCH did induce stress in rat 
INS1E cells but not ER stress. The absence of the same effect in human 
NES2Y cells can reflect that human beta-cell line NES2Y with constitu
tive insulin secretion lack the robustness of the protein synthesis appa
ratus necessary in cells with glucose-induced insulin secretion. 

3.5. Proteins involved in cAMP signaling 

In human beta-cells, α-HCH decreased the protein expression of a 
phosphorylated protein kinase A (p-PKA) to 73% of the control, β-HCH 
to 74% of the control, and γ-HCH to 81% of the control; all changes were 
statistically significant (Fig. 5). In rat beta-cells, the p-PKA protein 
expression remained unchanged after exposure to HCH isomers. Protein 
kinase A (PKA) is a cAMP-binding enzyme that undergoes autophos
phorylation to become fully active. cAMP signaling in beta-cells par
ticipates in the amplification of insulin secretion. All three HCH isomers 
decreased the level of phosphorylated PKA in human beta-cells, possibly 
because of decreased cAMP level. We hypothesize that HCH isomers 
affect the activity of adenylyl cyclases that synthesize cAMP or cAMP- 
phosphodiesterases. 

Fig. 6. The protein expression of glutathione reductase (Glu-Red), superoxide dismutase 1 (SOD1), and biliverdin reductase B (BLVRB) in the rat (INS1E) pancreatic 
beta-cells and human (NES2Y) pancreatic beta-cells exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for one month detected by western blot. Actin or 
HPRT was used as a loading control. The graphs represent an average of densitometric analyses of at least four western blots made of four independent sets of samples 
± SEM. Below each graph, a representative western blot is shown. 
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In human beta-cells, α-HCH significantly decreased the protein 
expression of activating transcription factor 3 (ATF3) to 47% of the 
control, β-HCH to 27% of the control, and γ-HCH to 45% of the control 
(Fig. 5). In rat beta-cells, only β-HCH significantly decreased the ATF3 
protein expression to 57% of the control (Fig. 5). A stress-inducible ATF3 
is a member of the CREB (cAMP response element-binding) protein 
family of transcription factors; stress factors that induce its expression 
include high glucose, palmitate, oxidative stress, or ER stress (Ku and 
Cheng, 2020). Some studies identified overexpressed ATF3 as a negative 
factor for beta-cell function (Busch et al., 2002; Jang et al., 2011; Kim 
et al., 2017). Nevertheless, an experiment with knockout mice showed 
that the lack of ATF3 undermines beta-cell function because it works as a 
transcription factor for insulin genes (Zmuda et al., 2010) and enhances 
insulin secretion (Kim et al., 2018). Therefore, it seems that both ATF3 
upregulation and downregulation can adversely affect beta-cell func
tion. All three HCH isomers downregulated ATF3 expression in human 
beta-cells, while only β-HCH demonstrated this effect in rat beta-cells. 
The difference can result from the lower expression of ATF3 in human 
NES2Y cells compared to rat INS1E cells; the lower ATF3 levels can be 
more easily affected. The decreased ATF3 levels make beta-cells more 
vulnerable: besides lower insulin expression, it can also diminish cells’ 
ability to handle various types of stress. We detected lower insulin 

expression in rat INS1E cells exposed to β-HCH, and β-HCH reduced 
ATF3 expression the most. Interestingly, ATF3 is more sensitive to 
exposure to HCH when compared to other tested proteins. 

3.6. Enzymes involved in defense against oxidative stress 

The protein expression of glutathione reductase (Glu-Red), super
oxide dismutase 1 (SOD1), and biliverdin reductase B (BLVRB) remained 
unchanged after the exposure to HCH isomers in both beta-cell lines 
(Fig. 6). 

Glutathione reductase and superoxide dismutase represent common 
antioxidant enzymes. Pancreatic beta-cells possess a relatively weak 
ability to handle oxidative stress compared to most other cell types due 
to low levels of antioxidant enzymes (Wang and Wang, 2017). There
fore, we have also determined the expression of biliverdin reductase B 
(BLVRB). Bilirubin can quench reactive oxygen species and become 
biliverdin; biliverdin reductase turns biliverdin back into bilirubin and 
keeps the system functional (Baranano et al., 2002; Sedlak and Snyder, 
2004). The bilirubin/biliverdin switch represents additional antioxidant 
protection in pancreatic beta-cells (Ikeda et al., 2011; Mishra and Ndi
sang, 2014). Nevertheless, the exposure to HCH isomers failed to alter 
significantly the expression of any antioxidant enzymes tested. These 

Fig. 7. The protein expression of glucose transporter 2 (GLUT2) and glucose transporter 1 (GLUT1) in the rat (INS1E) pancreatic beta-cells and human (NES2Y) 
pancreatic beta-cells exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for one month detected by western blot. Actin or HPRT was used as a loading 
control. The graphs represent an average of densitometric analyses of at least four western blots made of four independent sets of samples. Below each graph, a 
representative western blot is shown ± SEM. * means statistical significance (p < 0.05), * * means statistical significance (p < 0.01) determined by ONE-WAY 
ANOVA (Dunnet’s test). 
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results show that oxidative stress (if induced by exposure to HCH iso
mers) is not strong enough to alter the protein expression of 
anti-oxidative stress enzymes. 

3.7. Glucose transporters 

β-HCH decreased the protein expression of glucose transporter 1 
(GLUT1) in rat INS1E cells but not human NES2Y cells (Fig. 7). β-HCH 
decreased the protein expression of glucose transporter 2 (GLUT2) in 
human NES2Y cells but not rat INS1E cells (Fig. 7). 

In rat pancreatic beta-cells, GLUT2 represents the dominant glucose 
transporter; in human beta-cells, GLUT1 dominates (Coppieters et al., 
2011; Devos et al., 1995). In each cell line, β-HCH downregulated the 
less expressed glucose transporter. These results show that β-HCH pos
sesses the potential to downregulate glucose transporters’ expression. 
Nevertheless, under our experimental conditions, the effect was so small 
that it made a difference in the expression of low-expressed transporters 
but not those with a more robust expression. 

3.8. Proteins involved in lipid droplets formation 

In human NES2Y cells but not in rat INS1E cells, all three HCH iso
mers significantly decreased protein expression of perilipin-2 (Fig. 8). 
Lipid droplets consist of neutral lipids accompanied by enzymes and 
encircled by a membrane; these organelles typically occur in adipocytes. 
They can also be formed in pancreatic beta-cells due to nutrition over
load; human beta-cells create them more readily than rodent beta-cells 
(Liu et al., 2020). Some studies showed that lipid droplets positively 
affected pancreatic beta-cell survival and protected beta-cells against 
lipotoxicity (Plotz et al., 2016; Sramek et al., 2021). The perilipins are 
lipid droplet-associated proteins that regulate lipid metabolism in lipid 
droplets. According to Chen and coworkers, perilipin-2 (PLIN2) partic
ipated in an unfolded protein response, a cell defense mechanism 
induced by ER stress (Chen et al., 2017). Also, PLIN2 downregulation 
impaired insulin secretion under nutritional stress and damaged mito
chondria (Mishra et al., 2021). In human NES2Y cells, all three HCH 
isomers decreased the expression of PLIN2. The exposure to pollutants 
thus may compromise the human beta-cells ability to face lipotoxicity 
and stress. 

In rat beta-cells, γ-HCH significantly increased the protein expression 

Fig. 8. The protein expression of perilipin-5 (PLIN5) and perilipin-2 (PLIN2) in the rat (INS1E) pancreatic beta-cells and human (NES2Y) pancreatic beta-cells 
exposed to 10 μM concentrations of α-HCH, β-HCH, and γ-HCH for one month detected by western blot. Actin or HPRT was used as a loading control. The 
graphs represent an average of densitometric analyses of at least four western blots made of four independent sets of samples ± SEM. Below each graph, a repre
sentative western blot is shown. * means statistical significance (p < 0.05), * * means statistical significance (p < 0.01), * ** means statistical significance 
(p < 0.001) determined by ONE-WAY ANOVA (Dunnet’s test). 
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of perilipin-5 (PLIN5) to 149% of the control (Fig. 8). According to Zhu 
and coworkers(Zhu et al., 2019), increased expression of perilipin-5 
relieved palmitate-induced ER stress in INS1E cells and reduced oxida
tive damage associated with lipotoxicity (Zhu et al., 2020). Therefore, 
upregulated perilipin-5 in rat INS1E cells could represent increased 
protection against lipotoxicity-induced damage (γ-HCH is a hydropho
bic,i.e., fat-like, chemical). Alternatively, γ-HCH (a relatively hydro
phobic compound) could induce lipotoxicity in rat INS1E cells, and the 
cells increased the perilipin-5 expression to protect themselves. Inter
estingly, the other two HCH isomers failed to show a similar effect. A 
co-exposure of beta-cells to γ-HCH and a saturated fatty acid would 
show if γ-HCH induced lipotoxicity in rat beta-cells or rather protected 
them against it. 

We found but three proteins with altered expression in both beta-cell 
lines. These results showed that INS1E rat pancreatic beta-cells and 
NES2Y human pancreatic beta-cells represented complementary models 
rather than identical ones. The differences between human and rodent 
beta-cells include, e.g., reaction to various stress factors (Eizirik et al., 
1994; Law et al., 2010), the predominance of glucose transporters 
(McCulloch et al., 2011), or the presence of some ion channels and 
others (Klemen et al., 2017). Also, only the INS1E cells respond to 
increased glucose levels. Therefore, using two beta-cell lines give us a 
better idea about the effects of pollutants even when the results differ. 

4. Conclusions 

Of the tested HCH isomers, β-HCH impacted the expression of the 
tested proteins the most. It affected the expression of protein connecting 
glucose metabolism and fatty acid synthesis (decreased ATP-citrate 
lyase expression), a protein involved in defense against various types 
of stress (decreased ATF3 expression), and the expression of glucose 
transporters in both beta-cell lines. It also affected the translation 
(increased p-eIF2α expression) in the rat beta-cell line, cAMP signaling 
(decreased p-PKA expression), and lipid storage (decreased perilipin-2 
expression) in the human beta-cell line. γ-HCH affected the cell’s abil
ity to produce NADPH (decreased IDH1 expression) in both beta-cell 
lines. Interestingly, the prolonged exposure to HCH isomers failed to 
induce the markers of the stress of the endoplasmic reticulum or 
oxidative stress in beta-cells. 

Three proteins showed superior sensitivity toward exposure to pol
lutants: ATF3, p-PKA, and perilipin-2 decreased their expression in 
response to all three HCH isomers in the human beta-cells. Therefore, 
they represent potential biomarkers of the exposure of pancreatic beta- 
cells to pollutants, at least the more hydrophobic ones.To conclude, we 
have detected altered protein expression of several proteins in pancre
atic beta-cells exposed to HCH isomers. We hypothesize that while those 
changes may not represent an immediate threat to beta-cell function or 
survival, they could negatively affect them in the long term. The changes 
could also compromise the beta-cells ability to face other adverse con
ditions caused by, e.g., unhealthy food. 
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